Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006127629> ?p ?o ?g. }
- W2006127629 endingPage "8284" @default.
- W2006127629 startingPage "8275" @default.
- W2006127629 abstract "Prior studies demonstrated that ceramide promotes apoptotic cell death in the human myeloid leukemia cell lines HL-60 and U937 (Jarvis, W. D., Kolesnick, R. N., Fornari, F. A., Jr., Traylor, R. S., Gewirtz, D. A., and Grant, S.(1994) Proc. Natl. Acad. Sci. U. S. A. 91, 73-77), and that this lethal process is potently suppressed by diglyceride (Jarvis, W. D., Fornari, F. A., Jr., Browning, J. L., Gewirtz, D. A., Kolesnick, R. N., and Grant, S.(1994) J. Biol. Chem. 269, 31685-31692). The present findings document the intrinsic ability of sphingoid bases to induce apoptosis in HL-60 and U937 cells. Exposure to either sphingosine or sphinganine (0.001-10 μM) for 6 h promoted apoptotic degradation of genomic DNA as indicated by (a) electrophoretic resolution of 50-kilobase pair DNA loop fragments and 0.2-1.2-kilobase pair DNA fragment ladders on agarose gels, and (b) spectrofluorophotometric determination of the formation and release of double-stranded fragments and corresponding loss of integrity of bulk DNA. DNA damage correlated directly with reduced cloning efficiency and was associated with the appearance of apoptotic cytoarchitectural traits. At sublethal concentrations (≤750 nM), however, sphingoid bases synergistically augmented the apoptotic capacity of ceramide (10 μM), producing both a leftward shift in the ceramide concentration-response profile and a pronounced increase in the response to maximally effective levels of ceramide. Thus, sphingosine and sphinganine increased both the potency and efficacy of ceramide. The apoptotic capacity of bacterial sphingomyelinase (50 milliunits/ml) was similarly enhanced by either (a) acute co-exposure to highly selective pharmacological inhibitors of protein kinase C such as calphostin C and chelerythrine or (b) chronic pre-exposure to the non-tumor-promoting protein kinase C activator bryostatin 1, which completely down-modulated total assayable protein kinase C activity. These findings demonstrate that inhibition of protein kinase C by physiological or pharmacological agents potentiates the lethal actions of ceramide in human leukemia cells, providing further support for the emerging concept of a cytoprotective function of the protein kinase C isoenzyme family in the regulation of leukemic cell survival. Prior studies demonstrated that ceramide promotes apoptotic cell death in the human myeloid leukemia cell lines HL-60 and U937 (Jarvis, W. D., Kolesnick, R. N., Fornari, F. A., Jr., Traylor, R. S., Gewirtz, D. A., and Grant, S.(1994) Proc. Natl. Acad. Sci. U. S. A. 91, 73-77), and that this lethal process is potently suppressed by diglyceride (Jarvis, W. D., Fornari, F. A., Jr., Browning, J. L., Gewirtz, D. A., Kolesnick, R. N., and Grant, S.(1994) J. Biol. Chem. 269, 31685-31692). The present findings document the intrinsic ability of sphingoid bases to induce apoptosis in HL-60 and U937 cells. Exposure to either sphingosine or sphinganine (0.001-10 μM) for 6 h promoted apoptotic degradation of genomic DNA as indicated by (a) electrophoretic resolution of 50-kilobase pair DNA loop fragments and 0.2-1.2-kilobase pair DNA fragment ladders on agarose gels, and (b) spectrofluorophotometric determination of the formation and release of double-stranded fragments and corresponding loss of integrity of bulk DNA. DNA damage correlated directly with reduced cloning efficiency and was associated with the appearance of apoptotic cytoarchitectural traits. At sublethal concentrations (≤750 nM), however, sphingoid bases synergistically augmented the apoptotic capacity of ceramide (10 μM), producing both a leftward shift in the ceramide concentration-response profile and a pronounced increase in the response to maximally effective levels of ceramide. Thus, sphingosine and sphinganine increased both the potency and efficacy of ceramide. The apoptotic capacity of bacterial sphingomyelinase (50 milliunits/ml) was similarly enhanced by either (a) acute co-exposure to highly selective pharmacological inhibitors of protein kinase C such as calphostin C and chelerythrine or (b) chronic pre-exposure to the non-tumor-promoting protein kinase C activator bryostatin 1, which completely down-modulated total assayable protein kinase C activity. These findings demonstrate that inhibition of protein kinase C by physiological or pharmacological agents potentiates the lethal actions of ceramide in human leukemia cells, providing further support for the emerging concept of a cytoprotective function of the protein kinase C isoenzyme family in the regulation of leukemic cell survival." @default.
- W2006127629 created "2016-06-24" @default.
- W2006127629 creator A5004530946 @default.
- W2006127629 creator A5010969750 @default.
- W2006127629 creator A5014277407 @default.
- W2006127629 creator A5028432348 @default.
- W2006127629 creator A5032651967 @default.
- W2006127629 creator A5050174876 @default.
- W2006127629 creator A5061036144 @default.
- W2006127629 creator A5082876841 @default.
- W2006127629 date "1996-04-01" @default.
- W2006127629 modified "2023-10-18" @default.
- W2006127629 title "Induction of Apoptosis and Potentiation of Ceramide-mediated Cytotoxicity by Sphingoid Bases in Human Myeloid Leukemia Cells" @default.
- W2006127629 cites W1489400525 @default.
- W2006127629 cites W1494112528 @default.
- W2006127629 cites W1520176015 @default.
- W2006127629 cites W1524495054 @default.
- W2006127629 cites W1535433473 @default.
- W2006127629 cites W1536331044 @default.
- W2006127629 cites W1536767595 @default.
- W2006127629 cites W1536956900 @default.
- W2006127629 cites W1539477594 @default.
- W2006127629 cites W1564896848 @default.
- W2006127629 cites W1566441785 @default.
- W2006127629 cites W1567257037 @default.
- W2006127629 cites W1581414531 @default.
- W2006127629 cites W1583840873 @default.
- W2006127629 cites W1590089681 @default.
- W2006127629 cites W1595133660 @default.
- W2006127629 cites W1680920356 @default.
- W2006127629 cites W1686366659 @default.
- W2006127629 cites W1963730604 @default.
- W2006127629 cites W1968028322 @default.
- W2006127629 cites W1974540717 @default.
- W2006127629 cites W1991933436 @default.
- W2006127629 cites W1994828714 @default.
- W2006127629 cites W1996337563 @default.
- W2006127629 cites W1999689481 @default.
- W2006127629 cites W2008161863 @default.
- W2006127629 cites W2009373735 @default.
- W2006127629 cites W201144216 @default.
- W2006127629 cites W2011736449 @default.
- W2006127629 cites W2011979896 @default.
- W2006127629 cites W2017729786 @default.
- W2006127629 cites W2057399985 @default.
- W2006127629 cites W2058685812 @default.
- W2006127629 cites W2061574494 @default.
- W2006127629 cites W2062124441 @default.
- W2006127629 cites W2065838867 @default.
- W2006127629 cites W2068570002 @default.
- W2006127629 cites W2071190210 @default.
- W2006127629 cites W2080475643 @default.
- W2006127629 cites W2083836880 @default.
- W2006127629 cites W2084524998 @default.
- W2006127629 cites W2092330976 @default.
- W2006127629 cites W2118385360 @default.
- W2006127629 cites W2122734844 @default.
- W2006127629 cites W2133764756 @default.
- W2006127629 cites W2342838393 @default.
- W2006127629 cites W2415453289 @default.
- W2006127629 cites W2417798008 @default.
- W2006127629 doi "https://doi.org/10.1074/jbc.271.14.8275" @default.
- W2006127629 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8626522" @default.
- W2006127629 hasPublicationYear "1996" @default.
- W2006127629 type Work @default.
- W2006127629 sameAs 2006127629 @default.
- W2006127629 citedByCount "131" @default.
- W2006127629 countsByYear W20061276292012 @default.
- W2006127629 countsByYear W20061276292013 @default.
- W2006127629 countsByYear W20061276292014 @default.
- W2006127629 countsByYear W20061276292015 @default.
- W2006127629 countsByYear W20061276292016 @default.
- W2006127629 countsByYear W20061276292017 @default.
- W2006127629 countsByYear W20061276292018 @default.
- W2006127629 countsByYear W20061276292019 @default.
- W2006127629 countsByYear W20061276292020 @default.
- W2006127629 crossrefType "journal-article" @default.
- W2006127629 hasAuthorship W2006127629A5004530946 @default.
- W2006127629 hasAuthorship W2006127629A5010969750 @default.
- W2006127629 hasAuthorship W2006127629A5014277407 @default.
- W2006127629 hasAuthorship W2006127629A5028432348 @default.
- W2006127629 hasAuthorship W2006127629A5032651967 @default.
- W2006127629 hasAuthorship W2006127629A5050174876 @default.
- W2006127629 hasAuthorship W2006127629A5061036144 @default.
- W2006127629 hasAuthorship W2006127629A5082876841 @default.
- W2006127629 hasBestOaLocation W20061276291 @default.
- W2006127629 hasConcept C143425029 @default.
- W2006127629 hasConcept C153911025 @default.
- W2006127629 hasConcept C170493617 @default.
- W2006127629 hasConcept C180899940 @default.
- W2006127629 hasConcept C181199279 @default.
- W2006127629 hasConcept C190283241 @default.
- W2006127629 hasConcept C2777851122 @default.
- W2006127629 hasConcept C2778703144 @default.
- W2006127629 hasConcept C2778729363 @default.
- W2006127629 hasConcept C31573885 @default.
- W2006127629 hasConcept C41625074 @default.
- W2006127629 hasConcept C43759708 @default.