Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006202031> ?p ?o ?g. }
- W2006202031 endingPage "1783" @default.
- W2006202031 startingPage "1775" @default.
- W2006202031 abstract "Turbulence is a dominant feature operating in gaseous flows across nearly all scales in astrophysical environments. Accordingly, accurately estimating the statistical properties of such flows is necessary for developing a comprehensive understanding of turbulence. We develop and employ a hierarchical Bayesian fitting method to estimate the parameters describing the scaling relationships of the velocity power spectra of supersonic turbulence. We demonstrate the accuracy and other advantages of this technique compared with ordinary linear regression methods. Using synthetic power spectra, we show that the Bayesian method provides accurate parameter and error estimates. Commonly used normal linear regression methods can provide estimates that fail to recover the underlying slopes, up to 70% of the instances, even when considering the 2std.dev. uncertainties. Additionally, we apply the Bayesian methods to analyse the statistical properties of compressible turbulence in 3D numerical simulations. We model driven, isothermal, turbulence with rms Mach numbers in the highly supersonic regime M~15. We study the influence of purely solenoidal (divergence-free) and purely compressive (curl-free) forcing on the scaling exponent of the power spectrum. In simulations with solenoidal forcing and 1024^3 resolution, our results indicate that there is no extended inertial range with a constant scaling exponent. The bottleneck effect results in a curved power spectrum at all wave numbers and is more pronounced in the transversal modes compared with the longitudinal modes. Therefore, this effect is stronger in stationary turbulent flows driven by solenoidal forcing compared to the compressive one. The longitudinal spectrum driven with compressive forcing is the only spectrum with constant scaling exponent z=-1.94 +- 0.01, corresponding to slightly shallower slopes than the Burger's prediction." @default.
- W2006202031 created "2016-06-24" @default.
- W2006202031 creator A5036551948 @default.
- W2006202031 creator A5046592033 @default.
- W2006202031 creator A5062809181 @default.
- W2006202031 creator A5089015859 @default.
- W2006202031 date "2014-11-21" @default.
- W2006202031 modified "2023-10-05" @default.
- W2006202031 title "Hierarchical Bayesian analysis of the velocity power spectrum in supersonic turbulence" @default.
- W2006202031 cites W1589061681 @default.
- W2006202031 cites W1826260055 @default.
- W2006202031 cites W1915803594 @default.
- W2006202031 cites W1998043610 @default.
- W2006202031 cites W2001795732 @default.
- W2006202031 cites W2009161457 @default.
- W2006202031 cites W2019482055 @default.
- W2006202031 cites W2051549944 @default.
- W2006202031 cites W2051762527 @default.
- W2006202031 cites W2062147528 @default.
- W2006202031 cites W2068939329 @default.
- W2006202031 cites W2074149007 @default.
- W2006202031 cites W2075935058 @default.
- W2006202031 cites W2089143620 @default.
- W2006202031 cites W2095429521 @default.
- W2006202031 cites W2100973451 @default.
- W2006202031 cites W2113567585 @default.
- W2006202031 cites W2130582257 @default.
- W2006202031 cites W2140347367 @default.
- W2006202031 cites W2147617663 @default.
- W2006202031 cites W2154230608 @default.
- W2006202031 cites W2157482862 @default.
- W2006202031 cites W2530043748 @default.
- W2006202031 cites W3099768924 @default.
- W2006202031 cites W3101266329 @default.
- W2006202031 cites W3103077518 @default.
- W2006202031 cites W3103844252 @default.
- W2006202031 cites W3106156334 @default.
- W2006202031 cites W3121434188 @default.
- W2006202031 cites W3121677417 @default.
- W2006202031 cites W4243066586 @default.
- W2006202031 cites W624912034 @default.
- W2006202031 doi "https://doi.org/10.1093/mnras/stu2154" @default.
- W2006202031 hasPublicationYear "2014" @default.
- W2006202031 type Work @default.
- W2006202031 sameAs 2006202031 @default.
- W2006202031 citedByCount "9" @default.
- W2006202031 countsByYear W20062020312015 @default.
- W2006202031 countsByYear W20062020312016 @default.
- W2006202031 countsByYear W20062020312019 @default.
- W2006202031 countsByYear W20062020312021 @default.
- W2006202031 countsByYear W20062020312022 @default.
- W2006202031 countsByYear W20062020312023 @default.
- W2006202031 crossrefType "journal-article" @default.
- W2006202031 hasAuthorship W2006202031A5036551948 @default.
- W2006202031 hasAuthorship W2006202031A5046592033 @default.
- W2006202031 hasAuthorship W2006202031A5062809181 @default.
- W2006202031 hasAuthorship W2006202031A5089015859 @default.
- W2006202031 hasBestOaLocation W20062020311 @default.
- W2006202031 hasConcept C105795698 @default.
- W2006202031 hasConcept C121332964 @default.
- W2006202031 hasConcept C121864883 @default.
- W2006202031 hasConcept C168110828 @default.
- W2006202031 hasConcept C196558001 @default.
- W2006202031 hasConcept C205991772 @default.
- W2006202031 hasConcept C2524010 @default.
- W2006202031 hasConcept C30475298 @default.
- W2006202031 hasConcept C33923547 @default.
- W2006202031 hasConcept C57879066 @default.
- W2006202031 hasConcept C7451433 @default.
- W2006202031 hasConcept C91188154 @default.
- W2006202031 hasConcept C99844830 @default.
- W2006202031 hasConceptScore W2006202031C105795698 @default.
- W2006202031 hasConceptScore W2006202031C121332964 @default.
- W2006202031 hasConceptScore W2006202031C121864883 @default.
- W2006202031 hasConceptScore W2006202031C168110828 @default.
- W2006202031 hasConceptScore W2006202031C196558001 @default.
- W2006202031 hasConceptScore W2006202031C205991772 @default.
- W2006202031 hasConceptScore W2006202031C2524010 @default.
- W2006202031 hasConceptScore W2006202031C30475298 @default.
- W2006202031 hasConceptScore W2006202031C33923547 @default.
- W2006202031 hasConceptScore W2006202031C57879066 @default.
- W2006202031 hasConceptScore W2006202031C7451433 @default.
- W2006202031 hasConceptScore W2006202031C91188154 @default.
- W2006202031 hasConceptScore W2006202031C99844830 @default.
- W2006202031 hasIssue "2" @default.
- W2006202031 hasLocation W20062020311 @default.
- W2006202031 hasLocation W20062020312 @default.
- W2006202031 hasOpenAccess W2006202031 @default.
- W2006202031 hasPrimaryLocation W20062020311 @default.
- W2006202031 hasRelatedWork W2005105296 @default.
- W2006202031 hasRelatedWork W2036310654 @default.
- W2006202031 hasRelatedWork W2047316261 @default.
- W2006202031 hasRelatedWork W2140614865 @default.
- W2006202031 hasRelatedWork W2188017001 @default.
- W2006202031 hasRelatedWork W2298160210 @default.
- W2006202031 hasRelatedWork W2724514742 @default.
- W2006202031 hasRelatedWork W4251771514 @default.
- W2006202031 hasRelatedWork W4300176286 @default.