Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006207812> ?p ?o ?g. }
- W2006207812 endingPage "627" @default.
- W2006207812 startingPage "613" @default.
- W2006207812 abstract "Cold-tolerant, freeze-susceptible insects (those which die if frozen) survive subzero temperatures by proliferating antifreeze solutes which lower the freezing and supercooling points of their body fluids. These antifreezes are of two basic types. Lowmolecular-weight polyhydroxy alcohols and sugars depress the freezing point of water on a colligative basis, although at higher concentrations these solutes may deviate from linearity. Recent studies have shown that these solutes lower the supercooling point of aqueous solutions approximately two times more than they depress the freezing point. Consequently, if a freeze-susceptible insect accumulates sufficient glycerol to lower the freezing point by 5 °C, then the glycerol should depress the insect's supercooling point by 10 °C. Some cold-tolerant, freeze-susceptible insects produce proteins which produce a thermal hysteresis (a difference between the freezing and melting point) of several degrees in the body fluids. These thermal hysteresis proteins (THPs) are similar to the antifreeze proteins and glycoproteins of polar marine teleost fishes. The THPs lower the freezing, and presumably the supercooling, point by a noncolligative mechanism. Consequently, the insect can build up these antifreezes, and thereby gain protection from freezing, without the disruptive increases in osmotic pressure which accompany the accumulation of polyols or sugars. Therefore the THPs can be more easily accumulated and maintained during warm periods in anticipation of subzero temperatures. It is not surprising then that photoperiod, as well as temperature, is a critical environmental cue in the control of THP levels in insects. Some species of freeze-tolerant insects also produce THPs. This appears somewhat odd, since most freeze-tolerant insects produce ice nucleators which function to inhibit supercooling and it is therefore not clear why such an insect would produce antifreeze proteins. It is possible that the THPs have an alternate function in these species. However, it also appears that the THPs function as antifreezes during those periods of the year when these insects are not freeze tolerant (i.e., early autumn and spring) but when subzero temperatures could occur. In addition, at least one freeze-tolerant insect which produces THPs, Dendroides canadensis, typically loses freeze tolerance during midwinter thaws and then regains tolerance. The THPs could be important during those periods when Dendroides loses freeze tolerance by making the insect less susceptible to sudden temperature decreases. Comparatively little is known of the biochemistry of insect THPs. However, comparisons of those few insect THPs which have been purified with the THPs of fishes show some interesting differences. The insect THPs lack the large alanine component commonly found in the fish THPs. In addition, the insect THPs generally contain greater percentages of hydrophilic amino acids than do those of the fish. Perhaps the most interesting insect THPs are those from Tenebrio molitor which have an extremely large cysteine component (28% in one THP). Studies on the primary and higher-order structure of the insect THPs need to be carried out so that more critical comparisons with the fish THPs can be made. This may provide important insights into the mechanisms of freezing point and supercooling point depression exhibited by these molecules. In addition, comparative studies of the freezing and supercooling point depressing activities of the various THPs, in relation to their structures, should prove most interesting. It has become increasingly apparent over the last few years that most freeze-tolerant insects, unlike freeze-susceptible species, inhibit supercooling by accumulating ice-nucleating agents in their hemolymph. These nucleators function to ensure that ice formation occurs in the extracellular fluid at fairly high temperatures, thereby minimizing the possibility of formation of lethal intracellular ice. Little is known of the nature of the insect ice-nucleating agents. Those few which have been studied are heat sensitive and nondialyzable and are inactivated by proteolytic enzymes, thus indicating that they are proteinaceous. Studies on the structure-function relationships of these unique molecules should be done." @default.
- W2006207812 created "2016-06-24" @default.
- W2006207812 creator A5013259270 @default.
- W2006207812 date "1982-12-01" @default.
- W2006207812 modified "2023-09-29" @default.
- W2006207812 title "Insect antifreezes and ice-nucleating agents" @default.
- W2006207812 cites W1677598999 @default.
- W2006207812 cites W1965718065 @default.
- W2006207812 cites W1965797143 @default.
- W2006207812 cites W1967700734 @default.
- W2006207812 cites W1973421984 @default.
- W2006207812 cites W1977551956 @default.
- W2006207812 cites W1980626320 @default.
- W2006207812 cites W1982761652 @default.
- W2006207812 cites W1983764001 @default.
- W2006207812 cites W1983944186 @default.
- W2006207812 cites W1990345942 @default.
- W2006207812 cites W1995159060 @default.
- W2006207812 cites W1995789978 @default.
- W2006207812 cites W1998859685 @default.
- W2006207812 cites W2003192871 @default.
- W2006207812 cites W2010068920 @default.
- W2006207812 cites W2013367023 @default.
- W2006207812 cites W2018266109 @default.
- W2006207812 cites W2018995650 @default.
- W2006207812 cites W2024125927 @default.
- W2006207812 cites W2028581294 @default.
- W2006207812 cites W2030069076 @default.
- W2006207812 cites W2030443942 @default.
- W2006207812 cites W2031100027 @default.
- W2006207812 cites W2036362453 @default.
- W2006207812 cites W2036992000 @default.
- W2006207812 cites W2048060858 @default.
- W2006207812 cites W2050285576 @default.
- W2006207812 cites W2053747841 @default.
- W2006207812 cites W2058424227 @default.
- W2006207812 cites W2062053599 @default.
- W2006207812 cites W2065938738 @default.
- W2006207812 cites W2077110244 @default.
- W2006207812 cites W2081363317 @default.
- W2006207812 cites W2081407131 @default.
- W2006207812 cites W2081688399 @default.
- W2006207812 cites W2084802189 @default.
- W2006207812 cites W2085255255 @default.
- W2006207812 cites W2085350044 @default.
- W2006207812 cites W2086524325 @default.
- W2006207812 cites W2094036362 @default.
- W2006207812 cites W2094108392 @default.
- W2006207812 cites W2100486342 @default.
- W2006207812 cites W2122642279 @default.
- W2006207812 cites W2146545638 @default.
- W2006207812 cites W2155125512 @default.
- W2006207812 cites W2168229939 @default.
- W2006207812 cites W2232893150 @default.
- W2006207812 cites W2296784070 @default.
- W2006207812 cites W2797296950 @default.
- W2006207812 doi "https://doi.org/10.1016/0011-2240(82)90191-2" @default.
- W2006207812 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/6759045" @default.
- W2006207812 hasPublicationYear "1982" @default.
- W2006207812 type Work @default.
- W2006207812 sameAs 2006207812 @default.
- W2006207812 citedByCount "96" @default.
- W2006207812 countsByYear W20062078122013 @default.
- W2006207812 countsByYear W20062078122014 @default.
- W2006207812 countsByYear W20062078122017 @default.
- W2006207812 countsByYear W20062078122018 @default.
- W2006207812 countsByYear W20062078122019 @default.
- W2006207812 countsByYear W20062078122020 @default.
- W2006207812 countsByYear W20062078122021 @default.
- W2006207812 countsByYear W20062078122023 @default.
- W2006207812 crossrefType "journal-article" @default.
- W2006207812 hasAuthorship W2006207812A5013259270 @default.
- W2006207812 hasConcept C104317684 @default.
- W2006207812 hasConcept C112964491 @default.
- W2006207812 hasConcept C121332964 @default.
- W2006207812 hasConcept C125388846 @default.
- W2006207812 hasConcept C12554922 @default.
- W2006207812 hasConcept C13530604 @default.
- W2006207812 hasConcept C141734981 @default.
- W2006207812 hasConcept C153294291 @default.
- W2006207812 hasConcept C178790620 @default.
- W2006207812 hasConcept C179933525 @default.
- W2006207812 hasConcept C185592680 @default.
- W2006207812 hasConcept C196843134 @default.
- W2006207812 hasConcept C2776170207 @default.
- W2006207812 hasConcept C2776727640 @default.
- W2006207812 hasConcept C2776779347 @default.
- W2006207812 hasConcept C2780586759 @default.
- W2006207812 hasConcept C2780881558 @default.
- W2006207812 hasConcept C2992111332 @default.
- W2006207812 hasConcept C31903555 @default.
- W2006207812 hasConcept C43617362 @default.
- W2006207812 hasConcept C55493867 @default.
- W2006207812 hasConcept C68528507 @default.
- W2006207812 hasConcept C86803240 @default.
- W2006207812 hasConcept C95444343 @default.
- W2006207812 hasConcept C97355855 @default.
- W2006207812 hasConceptScore W2006207812C104317684 @default.