Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006305514> ?p ?o ?g. }
- W2006305514 endingPage "4528" @default.
- W2006305514 startingPage "4505" @default.
- W2006305514 abstract "Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (> 20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements directly, i.e. the acquired points. Gridding of the data is not necessary, a process which is inherently coupled to loss of data and precision. The 3D properties provide especially a good separability of buildings and terrain points respectively, if they are occluded by vegetation." @default.
- W2006305514 created "2016-06-24" @default.
- W2006305514 creator A5010005553 @default.
- W2006305514 creator A5024904329 @default.
- W2006305514 creator A5081275712 @default.
- W2006305514 creator A5091080773 @default.
- W2006305514 date "2008-08-04" @default.
- W2006305514 modified "2023-10-15" @default.
- W2006305514 title "Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification" @default.
- W2006305514 cites W1973025932 @default.
- W2006305514 cites W1975190596 @default.
- W2006305514 cites W2008477163 @default.
- W2006305514 cites W2009214675 @default.
- W2006305514 cites W2016068122 @default.
- W2006305514 cites W2027794006 @default.
- W2006305514 cites W2043501964 @default.
- W2006305514 cites W2056769281 @default.
- W2006305514 cites W2071997121 @default.
- W2006305514 cites W2086461898 @default.
- W2006305514 cites W2094605604 @default.
- W2006305514 cites W2130121782 @default.
- W2006305514 cites W2138060511 @default.
- W2006305514 cites W2164976328 @default.
- W2006305514 doi "https://doi.org/10.3390/s8084505" @default.
- W2006305514 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3705457" @default.
- W2006305514 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27873771" @default.
- W2006305514 hasPublicationYear "2008" @default.
- W2006305514 type Work @default.
- W2006305514 sameAs 2006305514 @default.
- W2006305514 citedByCount "132" @default.
- W2006305514 countsByYear W20063055142012 @default.
- W2006305514 countsByYear W20063055142013 @default.
- W2006305514 countsByYear W20063055142014 @default.
- W2006305514 countsByYear W20063055142015 @default.
- W2006305514 countsByYear W20063055142016 @default.
- W2006305514 countsByYear W20063055142017 @default.
- W2006305514 countsByYear W20063055142018 @default.
- W2006305514 countsByYear W20063055142019 @default.
- W2006305514 countsByYear W20063055142020 @default.
- W2006305514 countsByYear W20063055142021 @default.
- W2006305514 countsByYear W20063055142022 @default.
- W2006305514 countsByYear W20063055142023 @default.
- W2006305514 crossrefType "journal-article" @default.
- W2006305514 hasAuthorship W2006305514A5010005553 @default.
- W2006305514 hasAuthorship W2006305514A5024904329 @default.
- W2006305514 hasAuthorship W2006305514A5081275712 @default.
- W2006305514 hasAuthorship W2006305514A5091080773 @default.
- W2006305514 hasBestOaLocation W20063055141 @default.
- W2006305514 hasConcept C105795698 @default.
- W2006305514 hasConcept C107365816 @default.
- W2006305514 hasConcept C115051666 @default.
- W2006305514 hasConcept C120665830 @default.
- W2006305514 hasConcept C121332964 @default.
- W2006305514 hasConcept C127313418 @default.
- W2006305514 hasConcept C131979681 @default.
- W2006305514 hasConcept C13280743 @default.
- W2006305514 hasConcept C141349535 @default.
- W2006305514 hasConcept C142259097 @default.
- W2006305514 hasConcept C142724271 @default.
- W2006305514 hasConcept C154945302 @default.
- W2006305514 hasConcept C161840515 @default.
- W2006305514 hasConcept C205649164 @default.
- W2006305514 hasConcept C2776054349 @default.
- W2006305514 hasConcept C2776133958 @default.
- W2006305514 hasConcept C2779426996 @default.
- W2006305514 hasConcept C31258907 @default.
- W2006305514 hasConcept C33923547 @default.
- W2006305514 hasConcept C41008148 @default.
- W2006305514 hasConcept C51399673 @default.
- W2006305514 hasConcept C520434653 @default.
- W2006305514 hasConcept C58640448 @default.
- W2006305514 hasConcept C62520636 @default.
- W2006305514 hasConcept C62649853 @default.
- W2006305514 hasConcept C71924100 @default.
- W2006305514 hasConcept C89600930 @default.
- W2006305514 hasConceptScore W2006305514C105795698 @default.
- W2006305514 hasConceptScore W2006305514C107365816 @default.
- W2006305514 hasConceptScore W2006305514C115051666 @default.
- W2006305514 hasConceptScore W2006305514C120665830 @default.
- W2006305514 hasConceptScore W2006305514C121332964 @default.
- W2006305514 hasConceptScore W2006305514C127313418 @default.
- W2006305514 hasConceptScore W2006305514C131979681 @default.
- W2006305514 hasConceptScore W2006305514C13280743 @default.
- W2006305514 hasConceptScore W2006305514C141349535 @default.
- W2006305514 hasConceptScore W2006305514C142259097 @default.
- W2006305514 hasConceptScore W2006305514C142724271 @default.
- W2006305514 hasConceptScore W2006305514C154945302 @default.
- W2006305514 hasConceptScore W2006305514C161840515 @default.
- W2006305514 hasConceptScore W2006305514C205649164 @default.
- W2006305514 hasConceptScore W2006305514C2776054349 @default.
- W2006305514 hasConceptScore W2006305514C2776133958 @default.
- W2006305514 hasConceptScore W2006305514C2779426996 @default.
- W2006305514 hasConceptScore W2006305514C31258907 @default.
- W2006305514 hasConceptScore W2006305514C33923547 @default.
- W2006305514 hasConceptScore W2006305514C41008148 @default.
- W2006305514 hasConceptScore W2006305514C51399673 @default.
- W2006305514 hasConceptScore W2006305514C520434653 @default.
- W2006305514 hasConceptScore W2006305514C58640448 @default.