Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006338766> ?p ?o ?g. }
- W2006338766 endingPage "11" @default.
- W2006338766 startingPage "1" @default.
- W2006338766 abstract "The fundamental property of biological systems is photostability. Without photostability no life would be possible. Molecular structures responsible for harvesting of the solar energy must be photostable and resistant to photo-induced chemical changes or must find a way for a recovery. To answer the questions about the photostability we have to understand mechanisms of relaxation and energy dissipation upon an optical excitation. There is a common agreement that such channels are provided by some special features of the potential energy surfaces including the conical intersections. The mechanism that leads to decrease in the energy gap between the excited-state potential and the ground state energy surfaces is related to the coupling between the excited state (electronic or vibrational) and the intramolecular and intermolecular vibrational modes. When the potential energy surfaces approach each other nonadiabatic transitions are facilitated by their close proximity and the rate of radiationless transitions increases. The mechanism seems to be universal both for simple species such as H-bond systems, solvated electrons, and biologically important photoreceptor proteins such as bacteriorhodopsin. In order to study energy dissipation and dynamical alterations in the structure, a system is triggered with laser and monitored with excellent time-resolution. Ultrafast spectroscopies have played an important role in the study of a number of biological processes and have provided unique information about primary events and the mechanism of energy relaxation. Biological activity of molecules is frequently initiated by elementary chemical reactions such as energy and electron transfer, cis–trans isomerizations, or proton transfer. Many of these reactions are usually very fast and efficient and occur on picosecond and femtosecond timescales. This paper reviews recent progress of understanding light-energy collection and dissipation, with a special emphasis on the role of the vibronic coupling in H-bonded systems, solvated electrons and light-initiated biological photoreceptors. We will concentrate on the spectroscopic methods based on the linear and nonlinear responses such as the time resolved coherent anti-Stokes Raman spectroscopy (CARS) and the pump-probe transient femtosecond absorption spectroscopy. Detailed understanding the paths of energy dissipation will reveal mechanisms that mediate light-induced signal transduction as well as the role of photoreceptors in photostability protection and reparation mechanisms in living cells." @default.
- W2006338766 created "2016-06-24" @default.
- W2006338766 creator A5073686966 @default.
- W2006338766 date "2012-01-01" @default.
- W2006338766 modified "2023-10-16" @default.
- W2006338766 title "Mechanisms of energy dissipation and ultrafast primary events in photostable systems: H-bond, excess electron, biological photoreceptors" @default.
- W2006338766 cites W1512700640 @default.
- W2006338766 cites W1929091024 @default.
- W2006338766 cites W1968374461 @default.
- W2006338766 cites W1972455920 @default.
- W2006338766 cites W1986845115 @default.
- W2006338766 cites W1989595251 @default.
- W2006338766 cites W1995257684 @default.
- W2006338766 cites W2003731269 @default.
- W2006338766 cites W2008558515 @default.
- W2006338766 cites W2011074375 @default.
- W2006338766 cites W2012482483 @default.
- W2006338766 cites W2014400817 @default.
- W2006338766 cites W2020849235 @default.
- W2006338766 cites W2022243104 @default.
- W2006338766 cites W2022574675 @default.
- W2006338766 cites W2030557054 @default.
- W2006338766 cites W2036189046 @default.
- W2006338766 cites W2041901838 @default.
- W2006338766 cites W2046428304 @default.
- W2006338766 cites W2052986749 @default.
- W2006338766 cites W2059824119 @default.
- W2006338766 cites W2060282518 @default.
- W2006338766 cites W2062156366 @default.
- W2006338766 cites W2071012557 @default.
- W2006338766 cites W2071979132 @default.
- W2006338766 cites W2073222945 @default.
- W2006338766 cites W2080434319 @default.
- W2006338766 cites W2087311176 @default.
- W2006338766 cites W2087386574 @default.
- W2006338766 cites W2089670593 @default.
- W2006338766 cites W2089699052 @default.
- W2006338766 cites W2091857614 @default.
- W2006338766 cites W2094630173 @default.
- W2006338766 cites W2107179162 @default.
- W2006338766 cites W2125156733 @default.
- W2006338766 cites W2138281087 @default.
- W2006338766 cites W2142882197 @default.
- W2006338766 cites W2145086282 @default.
- W2006338766 cites W2147016720 @default.
- W2006338766 cites W2155115296 @default.
- W2006338766 cites W2159154977 @default.
- W2006338766 cites W2161692107 @default.
- W2006338766 cites W2169313667 @default.
- W2006338766 cites W2330385018 @default.
- W2006338766 cites W2952142289 @default.
- W2006338766 cites W4247399041 @default.
- W2006338766 doi "https://doi.org/10.1016/j.vibspec.2011.10.008" @default.
- W2006338766 hasPublicationYear "2012" @default.
- W2006338766 type Work @default.
- W2006338766 sameAs 2006338766 @default.
- W2006338766 citedByCount "11" @default.
- W2006338766 countsByYear W20063387662013 @default.
- W2006338766 countsByYear W20063387662014 @default.
- W2006338766 countsByYear W20063387662015 @default.
- W2006338766 countsByYear W20063387662017 @default.
- W2006338766 countsByYear W20063387662019 @default.
- W2006338766 countsByYear W20063387662021 @default.
- W2006338766 crossrefType "journal-article" @default.
- W2006338766 hasAuthorship W2006338766A5073686966 @default.
- W2006338766 hasConcept C121332964 @default.
- W2006338766 hasConcept C123669783 @default.
- W2006338766 hasConcept C135402231 @default.
- W2006338766 hasConcept C15744967 @default.
- W2006338766 hasConcept C159467904 @default.
- W2006338766 hasConcept C166950319 @default.
- W2006338766 hasConcept C178790620 @default.
- W2006338766 hasConcept C181500209 @default.
- W2006338766 hasConcept C184779094 @default.
- W2006338766 hasConcept C185592680 @default.
- W2006338766 hasConcept C22547674 @default.
- W2006338766 hasConcept C24857813 @default.
- W2006338766 hasConcept C2776029896 @default.
- W2006338766 hasConcept C32909587 @default.
- W2006338766 hasConcept C71240020 @default.
- W2006338766 hasConcept C75079739 @default.
- W2006338766 hasConcept C75473681 @default.
- W2006338766 hasConcept C77805123 @default.
- W2006338766 hasConcept C84551667 @default.
- W2006338766 hasConcept C84662259 @default.
- W2006338766 hasConcept C97355855 @default.
- W2006338766 hasConceptScore W2006338766C121332964 @default.
- W2006338766 hasConceptScore W2006338766C123669783 @default.
- W2006338766 hasConceptScore W2006338766C135402231 @default.
- W2006338766 hasConceptScore W2006338766C15744967 @default.
- W2006338766 hasConceptScore W2006338766C159467904 @default.
- W2006338766 hasConceptScore W2006338766C166950319 @default.
- W2006338766 hasConceptScore W2006338766C178790620 @default.
- W2006338766 hasConceptScore W2006338766C181500209 @default.
- W2006338766 hasConceptScore W2006338766C184779094 @default.
- W2006338766 hasConceptScore W2006338766C185592680 @default.
- W2006338766 hasConceptScore W2006338766C22547674 @default.
- W2006338766 hasConceptScore W2006338766C24857813 @default.