Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006348511> ?p ?o ?g. }
- W2006348511 endingPage "A651" @default.
- W2006348511 startingPage "A623" @default.
- W2006348511 abstract "Numerical methods for solving the ideal magnetohydrodynamic (MHD) equations in more than one space dimension must confront the challenge of controlling errors in the discrete divergence of the magnetic field. One approach that has been shown successful in stabilizing MHD calculations are constrained-transport (CT) schemes. CT schemes can be viewed as predictor-corrector methods for updating the magnetic field, where a magnetic field value is first predicted by a method that does not exactly preserve the divergence-free condition on the magnetic field, followed by a correction step that aims to control these divergence errors. In Helzel, Rossmanith, and Taetz [J. Comput. Phys., 230 (2011), pp. 3803--3829] the authors presented an unstaggered CT method for the MHD equations on three-dimensional Cartesian grids. In this approach an evolution equation for the magnetic potential is solved during each time step and a divergence-free update of the magnetic field is computed by taking the curl of the magnetic potential. The evolution equation for the vector potential is only weakly hyperbolic, which requires special numerical treatment. A key step in this method is the use of dimensional splitting in order to overcome these difficulties. In this work we generalize the method of Helzel, Rossmanith, and Taetz [J. Comput. Phys., 230 (2011), pp. 3803--3829] in three important ways: (1) we remove the need for operator splitting by switching to an appropriate method of lines discretization and coupling this with a nonconservative finite volume method for the magnetic vector potential equation; (2) we increase the spatial and temporal order of accuracy of the entire method to third order; and (3) we develop the method so that it is applicable on both Cartesian and logically rectangular mapped grids. The method-of-lines approach that is used in this work is based on a third-order accurate finite volume discretization in space coupled to a third-order strong stability preserving Runge--Kutta time-stepping method. The evolution equation for the magnetic vector potential is solved using a nonconservative finite volume method based on the approach of Castro et al. [Math. Comput., 79 (2010), pp. 1427--1472]. The curl of the magnetic potential is computed via a third-order accurate discrete operator that is derived from appropriate application of the divergence theorem and subsequent numerical quadrature on element faces. Special artificial resistivity limiters are used to control unphysical oscillations in the magnetic potential and field components across shocks. Several test computations are shown that confirm third-order accuracy for smooth test problems and high resolution for test problems with shock waves." @default.
- W2006348511 created "2016-06-24" @default.
- W2006348511 creator A5024456196 @default.
- W2006348511 creator A5071853554 @default.
- W2006348511 creator A5077433836 @default.
- W2006348511 date "2013-01-01" @default.
- W2006348511 modified "2023-10-17" @default.
- W2006348511 title "A High-Order Unstaggered Constrained-Transport Method for the Three-Dimensional Ideal Magnetohydrodynamic Equations Based on the Method of Lines" @default.
- W2006348511 cites W1493698815 @default.
- W2006348511 cites W1978525452 @default.
- W2006348511 cites W1980669062 @default.
- W2006348511 cites W1996222362 @default.
- W2006348511 cites W1999105805 @default.
- W2006348511 cites W2019090556 @default.
- W2006348511 cites W2026700540 @default.
- W2006348511 cites W2031208469 @default.
- W2006348511 cites W2034154296 @default.
- W2006348511 cites W2040870303 @default.
- W2006348511 cites W2044168876 @default.
- W2006348511 cites W2050445534 @default.
- W2006348511 cites W2056665075 @default.
- W2006348511 cites W2056949433 @default.
- W2006348511 cites W2057897500 @default.
- W2006348511 cites W2058421692 @default.
- W2006348511 cites W2062428473 @default.
- W2006348511 cites W2063900474 @default.
- W2006348511 cites W2065842177 @default.
- W2006348511 cites W2066110151 @default.
- W2006348511 cites W2072226973 @default.
- W2006348511 cites W2076710466 @default.
- W2006348511 cites W2088337589 @default.
- W2006348511 cites W2092629943 @default.
- W2006348511 cites W2094818681 @default.
- W2006348511 cites W2104377728 @default.
- W2006348511 cites W2110401007 @default.
- W2006348511 cites W2116729868 @default.
- W2006348511 cites W2142063750 @default.
- W2006348511 cites W2148699535 @default.
- W2006348511 cites W2157213039 @default.
- W2006348511 cites W2158427036 @default.
- W2006348511 cites W2592081797 @default.
- W2006348511 cites W3106200540 @default.
- W2006348511 doi "https://doi.org/10.1137/120870323" @default.
- W2006348511 hasPublicationYear "2013" @default.
- W2006348511 type Work @default.
- W2006348511 sameAs 2006348511 @default.
- W2006348511 citedByCount "17" @default.
- W2006348511 countsByYear W20063485112013 @default.
- W2006348511 countsByYear W20063485112014 @default.
- W2006348511 countsByYear W20063485112015 @default.
- W2006348511 countsByYear W20063485112016 @default.
- W2006348511 countsByYear W20063485112017 @default.
- W2006348511 countsByYear W20063485112018 @default.
- W2006348511 countsByYear W20063485112019 @default.
- W2006348511 countsByYear W20063485112020 @default.
- W2006348511 countsByYear W20063485112021 @default.
- W2006348511 crossrefType "journal-article" @default.
- W2006348511 hasAuthorship W2006348511A5024456196 @default.
- W2006348511 hasAuthorship W2006348511A5071853554 @default.
- W2006348511 hasAuthorship W2006348511A5077433836 @default.
- W2006348511 hasConcept C115260700 @default.
- W2006348511 hasConcept C121332964 @default.
- W2006348511 hasConcept C134306372 @default.
- W2006348511 hasConcept C138885662 @default.
- W2006348511 hasConcept C16038011 @default.
- W2006348511 hasConcept C194127275 @default.
- W2006348511 hasConcept C207390915 @default.
- W2006348511 hasConcept C2524010 @default.
- W2006348511 hasConcept C28826006 @default.
- W2006348511 hasConcept C31532427 @default.
- W2006348511 hasConcept C33923547 @default.
- W2006348511 hasConcept C41895202 @default.
- W2006348511 hasConcept C42471609 @default.
- W2006348511 hasConcept C48753275 @default.
- W2006348511 hasConcept C50478463 @default.
- W2006348511 hasConcept C57879066 @default.
- W2006348511 hasConcept C59282198 @default.
- W2006348511 hasConcept C62520636 @default.
- W2006348511 hasConcept C73000952 @default.
- W2006348511 hasConceptScore W2006348511C115260700 @default.
- W2006348511 hasConceptScore W2006348511C121332964 @default.
- W2006348511 hasConceptScore W2006348511C134306372 @default.
- W2006348511 hasConceptScore W2006348511C138885662 @default.
- W2006348511 hasConceptScore W2006348511C16038011 @default.
- W2006348511 hasConceptScore W2006348511C194127275 @default.
- W2006348511 hasConceptScore W2006348511C207390915 @default.
- W2006348511 hasConceptScore W2006348511C2524010 @default.
- W2006348511 hasConceptScore W2006348511C28826006 @default.
- W2006348511 hasConceptScore W2006348511C31532427 @default.
- W2006348511 hasConceptScore W2006348511C33923547 @default.
- W2006348511 hasConceptScore W2006348511C41895202 @default.
- W2006348511 hasConceptScore W2006348511C42471609 @default.
- W2006348511 hasConceptScore W2006348511C48753275 @default.
- W2006348511 hasConceptScore W2006348511C50478463 @default.
- W2006348511 hasConceptScore W2006348511C57879066 @default.
- W2006348511 hasConceptScore W2006348511C59282198 @default.
- W2006348511 hasConceptScore W2006348511C62520636 @default.
- W2006348511 hasConceptScore W2006348511C73000952 @default.