Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006360003> ?p ?o ?g. }
- W2006360003 endingPage "819" @default.
- W2006360003 startingPage "808" @default.
- W2006360003 abstract "A benchmark of several popular methods, Associative Neural Networks (ANN), Support Vector Machines (SVM), k Nearest Neighbors (kNN), Maximal Margin Linear Programming (MMLP), Radial Basis Function Neural Network (RBFNN), and Multiple Linear Regression (MLR), is reported for quantitative−structure property relationships (QSPR) of stability constants logK1 for the 1:1 (M:L) and logβ2 for 1:2 complexes of metal cations Ag+ and Eu3+ with diverse sets of organic molecules in water at 298 K and ionic strength 0.1 M. The methods were tested on three types of descriptors: molecular descriptors including E-state values, counts of atoms determined for E-state atom types, and substructural molecular fragments (SMF). Comparison of the models was performed using a 5-fold external cross-validation procedure. Robust statistical tests (bootstrap and Kolmogorov-Smirnov statistics) were employed to evaluate the significance of calculated models. The Wilcoxon signed-rank test was used to compare the performance of methods. Individual structure−complexation property models obtained with nonlinear methods demonstrated a significantly better performance than the models built using multilinear regression analysis (MLRA). However, the averaging of several MLRA models based on SMF descriptors provided as good of a prediction as the most efficient nonlinear techniques. Support Vector Machines and Associative Neural Networks contributed in the largest number of significant models. Models based on fragments (SMF descriptors and E-state counts) had higher prediction ability than those based on E-state indices. The use of SMF descriptors and E-state counts provided similar results, whereas E-state indices lead to less significant models. The current study illustrates the difficulties of quantitative comparison of different methods: conclusions based only on one data set without appropriate statistical tests could be wrong." @default.
- W2006360003 created "2016-06-24" @default.
- W2006360003 creator A5008233127 @default.
- W2006360003 creator A5009173251 @default.
- W2006360003 creator A5027200580 @default.
- W2006360003 creator A5031496807 @default.
- W2006360003 creator A5056496967 @default.
- W2006360003 creator A5064511503 @default.
- W2006360003 creator A5067679577 @default.
- W2006360003 creator A5070041767 @default.
- W2006360003 creator A5072029339 @default.
- W2006360003 creator A5080095160 @default.
- W2006360003 creator A5090895839 @default.
- W2006360003 date "2006-01-17" @default.
- W2006360003 modified "2023-10-17" @default.
- W2006360003 title "Benchmarking of Linear and Nonlinear Approaches for Quantitative Structure−Property Relationship Studies of Metal Complexation with Ionophores" @default.
- W2006360003 cites W1504991194 @default.
- W2006360003 cites W1541037889 @default.
- W2006360003 cites W1968756812 @default.
- W2006360003 cites W1994161110 @default.
- W2006360003 cites W1996573567 @default.
- W2006360003 cites W2010611103 @default.
- W2006360003 cites W2051606109 @default.
- W2006360003 cites W2052644203 @default.
- W2006360003 cites W2054904072 @default.
- W2006360003 cites W2068950612 @default.
- W2006360003 cites W2071551353 @default.
- W2006360003 cites W2077582053 @default.
- W2006360003 cites W2092315973 @default.
- W2006360003 cites W2094836090 @default.
- W2006360003 cites W2110462748 @default.
- W2006360003 cites W2115758667 @default.
- W2006360003 cites W2118286367 @default.
- W2006360003 cites W2135893370 @default.
- W2006360003 cites W2136678437 @default.
- W2006360003 cites W2148462634 @default.
- W2006360003 cites W2153019492 @default.
- W2006360003 cites W2163572677 @default.
- W2006360003 cites W2165314300 @default.
- W2006360003 cites W2207094495 @default.
- W2006360003 cites W2218897511 @default.
- W2006360003 cites W2287791846 @default.
- W2006360003 cites W89873841 @default.
- W2006360003 doi "https://doi.org/10.1021/ci0504216" @default.
- W2006360003 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16563012" @default.
- W2006360003 hasPublicationYear "2006" @default.
- W2006360003 type Work @default.
- W2006360003 sameAs 2006360003 @default.
- W2006360003 citedByCount "68" @default.
- W2006360003 countsByYear W20063600032012 @default.
- W2006360003 countsByYear W20063600032013 @default.
- W2006360003 countsByYear W20063600032014 @default.
- W2006360003 countsByYear W20063600032015 @default.
- W2006360003 countsByYear W20063600032016 @default.
- W2006360003 countsByYear W20063600032017 @default.
- W2006360003 countsByYear W20063600032018 @default.
- W2006360003 countsByYear W20063600032019 @default.
- W2006360003 countsByYear W20063600032020 @default.
- W2006360003 countsByYear W20063600032021 @default.
- W2006360003 countsByYear W20063600032022 @default.
- W2006360003 countsByYear W20063600032023 @default.
- W2006360003 crossrefType "journal-article" @default.
- W2006360003 hasAuthorship W2006360003A5008233127 @default.
- W2006360003 hasAuthorship W2006360003A5009173251 @default.
- W2006360003 hasAuthorship W2006360003A5027200580 @default.
- W2006360003 hasAuthorship W2006360003A5031496807 @default.
- W2006360003 hasAuthorship W2006360003A5056496967 @default.
- W2006360003 hasAuthorship W2006360003A5064511503 @default.
- W2006360003 hasAuthorship W2006360003A5067679577 @default.
- W2006360003 hasAuthorship W2006360003A5070041767 @default.
- W2006360003 hasAuthorship W2006360003A5072029339 @default.
- W2006360003 hasAuthorship W2006360003A5080095160 @default.
- W2006360003 hasAuthorship W2006360003A5090895839 @default.
- W2006360003 hasConcept C105795698 @default.
- W2006360003 hasConcept C119857082 @default.
- W2006360003 hasConcept C121332964 @default.
- W2006360003 hasConcept C12267149 @default.
- W2006360003 hasConcept C153180895 @default.
- W2006360003 hasConcept C154945302 @default.
- W2006360003 hasConcept C158622935 @default.
- W2006360003 hasConcept C164126121 @default.
- W2006360003 hasConcept C186060115 @default.
- W2006360003 hasConcept C202444582 @default.
- W2006360003 hasConcept C33923547 @default.
- W2006360003 hasConcept C41008148 @default.
- W2006360003 hasConcept C48921125 @default.
- W2006360003 hasConcept C50644808 @default.
- W2006360003 hasConcept C62520636 @default.
- W2006360003 hasConcept C84392682 @default.
- W2006360003 hasConcept C86803240 @default.
- W2006360003 hasConceptScore W2006360003C105795698 @default.
- W2006360003 hasConceptScore W2006360003C119857082 @default.
- W2006360003 hasConceptScore W2006360003C121332964 @default.
- W2006360003 hasConceptScore W2006360003C12267149 @default.
- W2006360003 hasConceptScore W2006360003C153180895 @default.
- W2006360003 hasConceptScore W2006360003C154945302 @default.
- W2006360003 hasConceptScore W2006360003C158622935 @default.
- W2006360003 hasConceptScore W2006360003C164126121 @default.