Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006473887> ?p ?o ?g. }
- W2006473887 endingPage "86" @default.
- W2006473887 startingPage "78" @default.
- W2006473887 abstract "In the present study, the possibility of using the multivariate curve resolution alternating least square (MCR–ALS) analysis for the simultaneous extraction of the pure synchronous fluorescence spectra at various wavelength offsets (Δλ) for each fluorophore from the total synchronous fluorescence spectroscopy (TSFS) data set of the dilute aqueous mixtures of the three fluorophores, was explored. The present work was based on the assumption that unfolded TSFS data has a bilinear structure and therefore it can be subjected to MCR–ALS analysis. Three fluorophores, benzo[a]pyrene(BaP), perylene(PE), and pyrene(PY), were chosen. These three fluorophores show fluorescence at all the seven wavelength offsets (Δλ) used to create the TSFS data set. In addition, Raman scattering due to solvent molecules (i.e. water) also appear in the wavelength ranges where these fluorophores show fluorescence. These two factors make the simultaneous extraction of synchronous spectral profile at various Δλs from the TSFS data set relatively difficult. The appearance of the diagonal signals in the three‐dimensional landscapes of TSFS shows the presence of the Raman scattering. The Raman signal due to solvent molecules was found to influence the synchronous profile of a fluorophore to different extents at different Δλs. TSFS data set of dimension, sample × wavelength × Δλ, was unfolded along the first mode to obtain the unfolded TSFS data set. Pure synchronous spectral profiles at various Δλs were obtained for each fluorophore by performing the MCR–ALS analysis on the unfolded TSFS data. However Raman scattering signals could not be eliminated from the synchronous spectral profiles of the PE and PY. For the mitigation of Raman scattering from the calculated spectral profiles, TSFS data of solvent blank were subtracted from all the samples before performing the MCR–ALS analysis. The obtained spectral profiles of BaP, PE, and PY were found to match with their actual spectral profiles which verifies that unfolded TSFS data set has a bilinear structure. To test the strength of the present work, MCR–ALS analysis was also performed on the unfolded TSFS data set of 12 groundwater samples which were contaminated with the BaP‐ and PY‐spiked gasoline. The obtained results show that it is possible to monitor the presence of BaP and PY in groundwater samples." @default.
- W2006473887 created "2016-06-24" @default.
- W2006473887 creator A5073862531 @default.
- W2006473887 creator A5085513768 @default.
- W2006473887 date "2012-07-01" @default.
- W2006473887 modified "2023-09-25" @default.
- W2006473887 title "Application of ‘multivariate curve resolution alternating least square (MCR–ALS)’ analysis to extract pure component synchronous fluorescence spectra at various wavelength offsets from total synchronous fluorescence spectroscopy (TSFS) data set of dilute aqueous solutions of fluorophores" @default.
- W2006473887 cites W1547668600 @default.
- W2006473887 cites W1964862250 @default.
- W2006473887 cites W1965402424 @default.
- W2006473887 cites W1965735019 @default.
- W2006473887 cites W1968061328 @default.
- W2006473887 cites W1974923028 @default.
- W2006473887 cites W1976681541 @default.
- W2006473887 cites W1979443389 @default.
- W2006473887 cites W1980163065 @default.
- W2006473887 cites W1986157931 @default.
- W2006473887 cites W1987874102 @default.
- W2006473887 cites W1992402414 @default.
- W2006473887 cites W1995298926 @default.
- W2006473887 cites W1996535019 @default.
- W2006473887 cites W2000210540 @default.
- W2006473887 cites W2001345257 @default.
- W2006473887 cites W2011714948 @default.
- W2006473887 cites W2012535214 @default.
- W2006473887 cites W2029650576 @default.
- W2006473887 cites W2031613019 @default.
- W2006473887 cites W2043082122 @default.
- W2006473887 cites W2044970692 @default.
- W2006473887 cites W2047996371 @default.
- W2006473887 cites W2049105177 @default.
- W2006473887 cites W2049903751 @default.
- W2006473887 cites W2051104416 @default.
- W2006473887 cites W2052431929 @default.
- W2006473887 cites W2058703410 @default.
- W2006473887 cites W2061442108 @default.
- W2006473887 cites W2061830314 @default.
- W2006473887 cites W2062626571 @default.
- W2006473887 cites W2067660971 @default.
- W2006473887 cites W2069753895 @default.
- W2006473887 cites W2076183439 @default.
- W2006473887 cites W2084680263 @default.
- W2006473887 cites W2089964698 @default.
- W2006473887 cites W2090696510 @default.
- W2006473887 cites W2092238832 @default.
- W2006473887 cites W2107602330 @default.
- W2006473887 cites W2117607838 @default.
- W2006473887 cites W2119741678 @default.
- W2006473887 cites W2132143854 @default.
- W2006473887 cites W2135456357 @default.
- W2006473887 cites W2142001565 @default.
- W2006473887 cites W2159346529 @default.
- W2006473887 cites W2166729042 @default.
- W2006473887 doi "https://doi.org/10.1016/j.chemolab.2012.04.015" @default.
- W2006473887 hasPublicationYear "2012" @default.
- W2006473887 type Work @default.
- W2006473887 sameAs 2006473887 @default.
- W2006473887 citedByCount "38" @default.
- W2006473887 countsByYear W20064738872012 @default.
- W2006473887 countsByYear W20064738872013 @default.
- W2006473887 countsByYear W20064738872014 @default.
- W2006473887 countsByYear W20064738872015 @default.
- W2006473887 countsByYear W20064738872016 @default.
- W2006473887 countsByYear W20064738872017 @default.
- W2006473887 countsByYear W20064738872018 @default.
- W2006473887 countsByYear W20064738872019 @default.
- W2006473887 countsByYear W20064738872020 @default.
- W2006473887 countsByYear W20064738872021 @default.
- W2006473887 countsByYear W20064738872022 @default.
- W2006473887 countsByYear W20064738872023 @default.
- W2006473887 crossrefType "journal-article" @default.
- W2006473887 hasAuthorship W2006473887A5073862531 @default.
- W2006473887 hasAuthorship W2006473887A5085513768 @default.
- W2006473887 hasConcept C113196181 @default.
- W2006473887 hasConcept C120665830 @default.
- W2006473887 hasConcept C121332964 @default.
- W2006473887 hasConcept C124967146 @default.
- W2006473887 hasConcept C1276947 @default.
- W2006473887 hasConcept C169573571 @default.
- W2006473887 hasConcept C178790620 @default.
- W2006473887 hasConcept C185592680 @default.
- W2006473887 hasConcept C192562407 @default.
- W2006473887 hasConcept C2778617687 @default.
- W2006473887 hasConcept C2779189646 @default.
- W2006473887 hasConcept C32909587 @default.
- W2006473887 hasConcept C40003534 @default.
- W2006473887 hasConcept C43617362 @default.
- W2006473887 hasConcept C4839761 @default.
- W2006473887 hasConcept C49040817 @default.
- W2006473887 hasConcept C6260449 @default.
- W2006473887 hasConcept C91881484 @default.
- W2006473887 hasConceptScore W2006473887C113196181 @default.
- W2006473887 hasConceptScore W2006473887C120665830 @default.
- W2006473887 hasConceptScore W2006473887C121332964 @default.
- W2006473887 hasConceptScore W2006473887C124967146 @default.
- W2006473887 hasConceptScore W2006473887C1276947 @default.
- W2006473887 hasConceptScore W2006473887C169573571 @default.
- W2006473887 hasConceptScore W2006473887C178790620 @default.