Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006642572> ?p ?o ?g. }
- W2006642572 abstract "The existence of an exotic long-lived negatively charged massive particle, i.e., ${X}^{ensuremath{-}}$, during big bang nucleosynthesis can affect primordial light element abundances. In particular, the final abundance of $^{7}mathrm{Li}$, mainly originating from the electron capture of $^{7}mathrm{Be}$, has been suggested to be made smaller by the $^{7}mathrm{Be}$ destruction via the radiative ${X}^{ensuremath{-}}$ capture of $^{7}mathrm{Be}$ followed by the radiative proton capture of the bound state of $^{7}mathrm{Be}$ and ${X}^{ensuremath{-}}$ ($^{7}mathrm{Be}_{X}$). We suggest a new route of $^{7}mathrm{Be}_{X}$ formation, that is the $^{7}mathrm{Be}$ charge exchange at the reaction of $^{7}mathrm{Be}^{3+}$ ion and ${X}^{ensuremath{-}}$. The formation rate depends on the number fraction of the $^{7}mathrm{Be}^{3+}$ ion, the charge exchange cross section of $^{7}mathrm{Be}^{3+}$, and the probability that produced excited states $^{7}mathrm{Be}_{X}^{*}$ are converted to the ground state. We estimate respective quantities affecting the $^{7}mathrm{Be}_{X}$ formation rate and find that this reaction pathway can be more important than the ordinary radiative recombination of $^{7}mathrm{Be}$ and ${X}^{ensuremath{-}}$. The effect of the charge exchange reaction is then shown in a latest nuclear reaction network calculation. Quantum physical model calculations for related reactions are needed to precisely estimate the efficiency of this pathway in the future." @default.
- W2006642572 created "2016-06-24" @default.
- W2006642572 creator A5025870780 @default.
- W2006642572 creator A5039864931 @default.
- W2006642572 creator A5046438858 @default.
- W2006642572 creator A5073824967 @default.
- W2006642572 creator A5083397886 @default.
- W2006642572 date "2013-09-10" @default.
- W2006642572 modified "2023-10-01" @default.
- W2006642572 title "Be7charge exchange betweenBe3+7ion and an exotic long-lived negatively charged massive particle in big bang nucleosynthesis" @default.
- W2006642572 cites W1570542987 @default.
- W2006642572 cites W1633251255 @default.
- W2006642572 cites W1948729350 @default.
- W2006642572 cites W1964618062 @default.
- W2006642572 cites W1973694448 @default.
- W2006642572 cites W1980624058 @default.
- W2006642572 cites W1982775434 @default.
- W2006642572 cites W1985657352 @default.
- W2006642572 cites W1990577178 @default.
- W2006642572 cites W1993427953 @default.
- W2006642572 cites W1995778743 @default.
- W2006642572 cites W1997038724 @default.
- W2006642572 cites W2000955316 @default.
- W2006642572 cites W2001891705 @default.
- W2006642572 cites W2008015949 @default.
- W2006642572 cites W2008561728 @default.
- W2006642572 cites W2016877944 @default.
- W2006642572 cites W2025369491 @default.
- W2006642572 cites W2026033098 @default.
- W2006642572 cites W2029668569 @default.
- W2006642572 cites W2034484045 @default.
- W2006642572 cites W2041786086 @default.
- W2006642572 cites W2044643318 @default.
- W2006642572 cites W2045381774 @default.
- W2006642572 cites W2056097433 @default.
- W2006642572 cites W2058327655 @default.
- W2006642572 cites W2059901159 @default.
- W2006642572 cites W2060494323 @default.
- W2006642572 cites W2062025689 @default.
- W2006642572 cites W2062392311 @default.
- W2006642572 cites W2068023724 @default.
- W2006642572 cites W2069164871 @default.
- W2006642572 cites W2074467571 @default.
- W2006642572 cites W2075390602 @default.
- W2006642572 cites W2077764311 @default.
- W2006642572 cites W2077883327 @default.
- W2006642572 cites W2080032974 @default.
- W2006642572 cites W2092804462 @default.
- W2006642572 cites W2097088502 @default.
- W2006642572 cites W2097338250 @default.
- W2006642572 cites W2104310155 @default.
- W2006642572 cites W2114672173 @default.
- W2006642572 cites W2118265220 @default.
- W2006642572 cites W2127304902 @default.
- W2006642572 cites W2131517707 @default.
- W2006642572 cites W2133118636 @default.
- W2006642572 cites W2135638431 @default.
- W2006642572 cites W2136073888 @default.
- W2006642572 cites W2152123318 @default.
- W2006642572 cites W2154748230 @default.
- W2006642572 cites W2155291506 @default.
- W2006642572 cites W2164719957 @default.
- W2006642572 cites W2165916559 @default.
- W2006642572 cites W2169963214 @default.
- W2006642572 cites W2170248985 @default.
- W2006642572 cites W2330283415 @default.
- W2006642572 cites W2949296242 @default.
- W2006642572 cites W3098286737 @default.
- W2006642572 cites W3098388763 @default.
- W2006642572 cites W3098853270 @default.
- W2006642572 cites W3099234116 @default.
- W2006642572 cites W3101051331 @default.
- W2006642572 cites W3101176483 @default.
- W2006642572 cites W3101456000 @default.
- W2006642572 cites W3104839543 @default.
- W2006642572 cites W3105466742 @default.
- W2006642572 cites W3125096806 @default.
- W2006642572 cites W3125406988 @default.
- W2006642572 cites W4289255554 @default.
- W2006642572 cites W4297432658 @default.
- W2006642572 doi "https://doi.org/10.1103/physrevd.88.063514" @default.
- W2006642572 hasPublicationYear "2013" @default.
- W2006642572 type Work @default.
- W2006642572 sameAs 2006642572 @default.
- W2006642572 citedByCount "9" @default.
- W2006642572 countsByYear W20066425722014 @default.
- W2006642572 countsByYear W20066425722017 @default.
- W2006642572 countsByYear W20066425722018 @default.
- W2006642572 countsByYear W20066425722019 @default.
- W2006642572 countsByYear W20066425722022 @default.
- W2006642572 crossrefType "journal-article" @default.
- W2006642572 hasAuthorship W2006642572A5025870780 @default.
- W2006642572 hasAuthorship W2006642572A5039864931 @default.
- W2006642572 hasAuthorship W2006642572A5046438858 @default.
- W2006642572 hasAuthorship W2006642572A5073824967 @default.
- W2006642572 hasAuthorship W2006642572A5083397886 @default.
- W2006642572 hasBestOaLocation W20066425722 @default.
- W2006642572 hasConcept C105066094 @default.
- W2006642572 hasConcept C109214941 @default.
- W2006642572 hasConcept C121332964 @default.