Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006674754> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2006674754 endingPage "96" @default.
- W2006674754 startingPage "89" @default.
- W2006674754 abstract "Levels of pathogenic organisms in food and water have steadily declined in many parts of the world. A consequence of this reduction is that the proportion of samples that test positive for the most contaminated product-pathogen pairings has fallen to less than 0.1. While this is unequivocally beneficial to public health, datasets with very few enumerated samples present an analytical challenge because a large proportion of the observations are censored values. One application of particular interest to risk assessors is the fitting of a statistical distribution function to datasets collected at some point in the farm-to-table continuum. The fitted distribution forms an important component of an exposure assessment. A number of studies have compared different fitting methods and proposed lower limits on the proportion of samples where the organisms of interest are identified and enumerated, with the recommended lower limit of enumerated samples being 0.2. This recommendation may not be applicable to food safety risk assessments for a number of reasons, which include the development of new Bayesian fitting methods, the use of highly sensitive screening tests, and the generally larger sample sizes found in surveys of food commodities. This study evaluates the performance of a Markov chain Monte Carlo fitting method when used in conjunction with a screening test and enumeration of positive samples by the Most Probable Number technique. The results suggest that levels of contamination for common product-pathogen pairs, such as Salmonella on poultry carcasses, can be reliably estimated with the proposed fitting method and samples sizes in excess of 500 observations. The results do, however, demonstrate that simple guidelines for this application, such as the proportion of positive samples, cannot be provided." @default.
- W2006674754 created "2016-06-24" @default.
- W2006674754 creator A5045816414 @default.
- W2006674754 creator A5053477678 @default.
- W2006674754 creator A5073107134 @default.
- W2006674754 date "2013-07-01" @default.
- W2006674754 modified "2023-10-14" @default.
- W2006674754 title "Sample size guidelines for fitting a lognormal probability distribution to censored most probable number data with a Markov chain Monte Carlo method" @default.
- W2006674754 cites W1512942950 @default.
- W2006674754 cites W1658446649 @default.
- W2006674754 cites W1956971486 @default.
- W2006674754 cites W1971888096 @default.
- W2006674754 cites W1976706121 @default.
- W2006674754 cites W1979137336 @default.
- W2006674754 cites W1982290306 @default.
- W2006674754 cites W1982380621 @default.
- W2006674754 cites W1985920298 @default.
- W2006674754 cites W1986642831 @default.
- W2006674754 cites W2010420842 @default.
- W2006674754 cites W2015058745 @default.
- W2006674754 cites W2041098432 @default.
- W2006674754 cites W2049849497 @default.
- W2006674754 cites W2054045061 @default.
- W2006674754 cites W2093178743 @default.
- W2006674754 cites W2102386709 @default.
- W2006674754 cites W2104027579 @default.
- W2006674754 cites W2110607686 @default.
- W2006674754 cites W2134012062 @default.
- W2006674754 cites W2134104241 @default.
- W2006674754 cites W2318357371 @default.
- W2006674754 cites W2329368462 @default.
- W2006674754 cites W2587508995 @default.
- W2006674754 cites W4293241248 @default.
- W2006674754 doi "https://doi.org/10.1016/j.ijfoodmicro.2013.04.026" @default.
- W2006674754 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23727652" @default.
- W2006674754 hasPublicationYear "2013" @default.
- W2006674754 type Work @default.
- W2006674754 sameAs 2006674754 @default.
- W2006674754 citedByCount "8" @default.
- W2006674754 countsByYear W20066747542014 @default.
- W2006674754 countsByYear W20066747542015 @default.
- W2006674754 countsByYear W20066747542016 @default.
- W2006674754 countsByYear W20066747542017 @default.
- W2006674754 crossrefType "journal-article" @default.
- W2006674754 hasAuthorship W2006674754A5045816414 @default.
- W2006674754 hasAuthorship W2006674754A5053477678 @default.
- W2006674754 hasAuthorship W2006674754A5073107134 @default.
- W2006674754 hasConcept C105795698 @default.
- W2006674754 hasConcept C107673813 @default.
- W2006674754 hasConcept C111350023 @default.
- W2006674754 hasConcept C129848803 @default.
- W2006674754 hasConcept C151620405 @default.
- W2006674754 hasConcept C19499675 @default.
- W2006674754 hasConcept C33923547 @default.
- W2006674754 hasConcept C98763669 @default.
- W2006674754 hasConceptScore W2006674754C105795698 @default.
- W2006674754 hasConceptScore W2006674754C107673813 @default.
- W2006674754 hasConceptScore W2006674754C111350023 @default.
- W2006674754 hasConceptScore W2006674754C129848803 @default.
- W2006674754 hasConceptScore W2006674754C151620405 @default.
- W2006674754 hasConceptScore W2006674754C19499675 @default.
- W2006674754 hasConceptScore W2006674754C33923547 @default.
- W2006674754 hasConceptScore W2006674754C98763669 @default.
- W2006674754 hasIssue "2" @default.
- W2006674754 hasLocation W20066747541 @default.
- W2006674754 hasLocation W20066747542 @default.
- W2006674754 hasOpenAccess W2006674754 @default.
- W2006674754 hasPrimaryLocation W20066747541 @default.
- W2006674754 hasRelatedWork W2011669161 @default.
- W2006674754 hasRelatedWork W2083114504 @default.
- W2006674754 hasRelatedWork W2151689585 @default.
- W2006674754 hasRelatedWork W2380816257 @default.
- W2006674754 hasRelatedWork W2493033802 @default.
- W2006674754 hasRelatedWork W3087071515 @default.
- W2006674754 hasRelatedWork W3093571331 @default.
- W2006674754 hasRelatedWork W3098004296 @default.
- W2006674754 hasRelatedWork W3149585742 @default.
- W2006674754 hasRelatedWork W4283726152 @default.
- W2006674754 hasVolume "165" @default.
- W2006674754 isParatext "false" @default.
- W2006674754 isRetracted "false" @default.
- W2006674754 magId "2006674754" @default.
- W2006674754 workType "article" @default.