Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006748696> ?p ?o ?g. }
- W2006748696 endingPage "988" @default.
- W2006748696 startingPage "978" @default.
- W2006748696 abstract "In this paper, a classification method based on fuzzy linguistic rules is exposed. It is applied for the recognition of the gradual color of wood in an industrial context. The wood, which is a natural material, implies uncertainty in the definition of its color. Moreover, the timber context leads obtaining imprecise data. Several factors can have an impact on the sensors (ageing of the acquisition system, variation of the ambient temperature, etc.). Finally, the data sets are often small and incomplete. Thus the proposed method must work within these constraints, and must be compatible with the time-constraint of the system. This generally imposes a weak complexity of the recognition system. The Fuzzy Rule Classifier is split in two main parts, the fuzzification step and the rule generation step. To improve the tuning of this classifier, a specific fuzzification method is presented and compared with more classical ones. Several comparisons have been made with other classification method such as neural network or support vector machine. This experimental study showed the suitability of the proposed approach essentially in term of generalization capabilities from small data sets, and recognition rate improvement." @default.
- W2006748696 created "2016-06-24" @default.
- W2006748696 creator A5021608899 @default.
- W2006748696 creator A5070522287 @default.
- W2006748696 date "2010-09-01" @default.
- W2006748696 modified "2023-09-27" @default.
- W2006748696 title "Fuzzy rule classifier: Capability for generalization in wood color recognition" @default.
- W2006748696 cites W1594444054 @default.
- W2006748696 cites W1606432880 @default.
- W2006748696 cites W1964209901 @default.
- W2006748696 cites W1966363240 @default.
- W2006748696 cites W1969701372 @default.
- W2006748696 cites W1970636524 @default.
- W2006748696 cites W1971078475 @default.
- W2006748696 cites W1983425265 @default.
- W2006748696 cites W1995210144 @default.
- W2006748696 cites W2003087683 @default.
- W2006748696 cites W2003486614 @default.
- W2006748696 cites W2020712941 @default.
- W2006748696 cites W2023411620 @default.
- W2006748696 cites W2023468522 @default.
- W2006748696 cites W2028933072 @default.
- W2006748696 cites W2032521963 @default.
- W2006748696 cites W2040895929 @default.
- W2006748696 cites W2044827781 @default.
- W2006748696 cites W2049736842 @default.
- W2006748696 cites W2050288270 @default.
- W2006748696 cites W2050895247 @default.
- W2006748696 cites W2053475187 @default.
- W2006748696 cites W2054039029 @default.
- W2006748696 cites W2063828223 @default.
- W2006748696 cites W2064405968 @default.
- W2006748696 cites W2068283474 @default.
- W2006748696 cites W2073570454 @default.
- W2006748696 cites W2078066200 @default.
- W2006748696 cites W2089395149 @default.
- W2006748696 cites W2093754377 @default.
- W2006748696 cites W2097460058 @default.
- W2006748696 cites W2097653553 @default.
- W2006748696 cites W2098380795 @default.
- W2006748696 cites W2099846434 @default.
- W2006748696 cites W2110086824 @default.
- W2006748696 cites W2116309930 @default.
- W2006748696 cites W2116957451 @default.
- W2006748696 cites W2130660124 @default.
- W2006748696 cites W2133845953 @default.
- W2006748696 cites W2134880090 @default.
- W2006748696 cites W2135423934 @default.
- W2006748696 cites W2145038862 @default.
- W2006748696 cites W2162624281 @default.
- W2006748696 cites W2164777277 @default.
- W2006748696 cites W2165550819 @default.
- W2006748696 cites W4211007335 @default.
- W2006748696 cites W4240278385 @default.
- W2006748696 cites W4256301913 @default.
- W2006748696 doi "https://doi.org/10.1016/j.engappai.2010.05.001" @default.
- W2006748696 hasPublicationYear "2010" @default.
- W2006748696 type Work @default.
- W2006748696 sameAs 2006748696 @default.
- W2006748696 citedByCount "29" @default.
- W2006748696 countsByYear W20067486962013 @default.
- W2006748696 countsByYear W20067486962014 @default.
- W2006748696 countsByYear W20067486962015 @default.
- W2006748696 countsByYear W20067486962016 @default.
- W2006748696 countsByYear W20067486962017 @default.
- W2006748696 countsByYear W20067486962018 @default.
- W2006748696 countsByYear W20067486962019 @default.
- W2006748696 countsByYear W20067486962020 @default.
- W2006748696 countsByYear W20067486962021 @default.
- W2006748696 countsByYear W20067486962022 @default.
- W2006748696 countsByYear W20067486962023 @default.
- W2006748696 crossrefType "journal-article" @default.
- W2006748696 hasAuthorship W2006748696A5021608899 @default.
- W2006748696 hasAuthorship W2006748696A5070522287 @default.
- W2006748696 hasBestOaLocation W20067486962 @default.
- W2006748696 hasConcept C119857082 @default.
- W2006748696 hasConcept C12267149 @default.
- W2006748696 hasConcept C124101348 @default.
- W2006748696 hasConcept C153180895 @default.
- W2006748696 hasConcept C154945302 @default.
- W2006748696 hasConcept C2780049643 @default.
- W2006748696 hasConcept C41008148 @default.
- W2006748696 hasConcept C42011625 @default.
- W2006748696 hasConcept C50644808 @default.
- W2006748696 hasConcept C58166 @default.
- W2006748696 hasConcept C95623464 @default.
- W2006748696 hasConceptScore W2006748696C119857082 @default.
- W2006748696 hasConceptScore W2006748696C12267149 @default.
- W2006748696 hasConceptScore W2006748696C124101348 @default.
- W2006748696 hasConceptScore W2006748696C153180895 @default.
- W2006748696 hasConceptScore W2006748696C154945302 @default.
- W2006748696 hasConceptScore W2006748696C2780049643 @default.
- W2006748696 hasConceptScore W2006748696C41008148 @default.
- W2006748696 hasConceptScore W2006748696C42011625 @default.
- W2006748696 hasConceptScore W2006748696C50644808 @default.
- W2006748696 hasConceptScore W2006748696C58166 @default.
- W2006748696 hasConceptScore W2006748696C95623464 @default.
- W2006748696 hasIssue "6" @default.