Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006787952> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2006787952 abstract "The Neural Engineering Framework (NEF) is a tool that is capable of synthesising large-scale cognitive systems from subnetworks; and it has been used to construct SPAUN, which is the first brain model capable of performing cognitive tasks. It has been implemented on computers using high-level programming languages. However the software model runs much slower than real time, and therefore is not capable of performing for applications that need real-time control, such as interactive robotic systems. Here we present a compact neural core for digital implementation of the NEF on Field Programmable Gate Arrays (FPGAs) in real time. The proposed digital neural core consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. As NEF intrinsically uses a spike rate-encoding paradigm, rather than implementing spiking neurons and then measuring their firing rates, we chose to implement NEF with neurons that compute their firing rate directly. The neuron is efficiently implemented using a 9-bit fixed-point multiplier without the requirement of memory, the bandwidth of memory being the bottleneck for the time-multiplexing approach. The neural core uses only a fraction of the hardware resources in a commercial-off-the-shelf FPGA (even an entry level one) and can be easily programmed for different mathematical computations. Multiple cores can easily be combined to build real-time large-scale cognitive neural networks using the Neural Engineering Framework." @default.
- W2006787952 created "2016-06-24" @default.
- W2006787952 creator A5020364496 @default.
- W2006787952 creator A5036906742 @default.
- W2006787952 creator A5045046523 @default.
- W2006787952 creator A5061261367 @default.
- W2006787952 date "2014-10-01" @default.
- W2006787952 modified "2023-09-23" @default.
- W2006787952 title "A compact neural core for digital implementation of the Neural Engineering Framework" @default.
- W2006787952 cites W2016708835 @default.
- W2006787952 cites W2021225682 @default.
- W2006787952 cites W2072851333 @default.
- W2006787952 cites W2082734621 @default.
- W2006787952 cites W2097379590 @default.
- W2006787952 cites W2115582366 @default.
- W2006787952 cites W2123321612 @default.
- W2006787952 cites W2138061685 @default.
- W2006787952 cites W2140124781 @default.
- W2006787952 cites W2170657812 @default.
- W2006787952 cites W2463463788 @default.
- W2006787952 doi "https://doi.org/10.1109/biocas.2014.6981784" @default.
- W2006787952 hasPublicationYear "2014" @default.
- W2006787952 type Work @default.
- W2006787952 sameAs 2006787952 @default.
- W2006787952 citedByCount "11" @default.
- W2006787952 countsByYear W20067879522015 @default.
- W2006787952 countsByYear W20067879522016 @default.
- W2006787952 countsByYear W20067879522017 @default.
- W2006787952 countsByYear W20067879522018 @default.
- W2006787952 countsByYear W20067879522019 @default.
- W2006787952 crossrefType "proceedings-article" @default.
- W2006787952 hasAuthorship W2006787952A5020364496 @default.
- W2006787952 hasAuthorship W2006787952A5036906742 @default.
- W2006787952 hasAuthorship W2006787952A5045046523 @default.
- W2006787952 hasAuthorship W2006787952A5061261367 @default.
- W2006787952 hasConcept C118524514 @default.
- W2006787952 hasConcept C124584101 @default.
- W2006787952 hasConcept C125411270 @default.
- W2006787952 hasConcept C139719470 @default.
- W2006787952 hasConcept C149635348 @default.
- W2006787952 hasConcept C154945302 @default.
- W2006787952 hasConcept C162324750 @default.
- W2006787952 hasConcept C188045654 @default.
- W2006787952 hasConcept C19275194 @default.
- W2006787952 hasConcept C2780513914 @default.
- W2006787952 hasConcept C41008148 @default.
- W2006787952 hasConcept C42935608 @default.
- W2006787952 hasConcept C50644808 @default.
- W2006787952 hasConcept C76155785 @default.
- W2006787952 hasConcept C9390403 @default.
- W2006787952 hasConceptScore W2006787952C118524514 @default.
- W2006787952 hasConceptScore W2006787952C124584101 @default.
- W2006787952 hasConceptScore W2006787952C125411270 @default.
- W2006787952 hasConceptScore W2006787952C139719470 @default.
- W2006787952 hasConceptScore W2006787952C149635348 @default.
- W2006787952 hasConceptScore W2006787952C154945302 @default.
- W2006787952 hasConceptScore W2006787952C162324750 @default.
- W2006787952 hasConceptScore W2006787952C188045654 @default.
- W2006787952 hasConceptScore W2006787952C19275194 @default.
- W2006787952 hasConceptScore W2006787952C2780513914 @default.
- W2006787952 hasConceptScore W2006787952C41008148 @default.
- W2006787952 hasConceptScore W2006787952C42935608 @default.
- W2006787952 hasConceptScore W2006787952C50644808 @default.
- W2006787952 hasConceptScore W2006787952C76155785 @default.
- W2006787952 hasConceptScore W2006787952C9390403 @default.
- W2006787952 hasLocation W20067879521 @default.
- W2006787952 hasOpenAccess W2006787952 @default.
- W2006787952 hasPrimaryLocation W20067879521 @default.
- W2006787952 hasRelatedWork W1518009538 @default.
- W2006787952 hasRelatedWork W2002703587 @default.
- W2006787952 hasRelatedWork W2081210598 @default.
- W2006787952 hasRelatedWork W2369375926 @default.
- W2006787952 hasRelatedWork W2377311121 @default.
- W2006787952 hasRelatedWork W2388140273 @default.
- W2006787952 hasRelatedWork W2980006224 @default.
- W2006787952 hasRelatedWork W3124648670 @default.
- W2006787952 hasRelatedWork W3217667592 @default.
- W2006787952 hasRelatedWork W82850464 @default.
- W2006787952 isParatext "false" @default.
- W2006787952 isRetracted "false" @default.
- W2006787952 magId "2006787952" @default.
- W2006787952 workType "article" @default.