Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006800437> ?p ?o ?g. }
- W2006800437 endingPage "2118" @default.
- W2006800437 startingPage "2102" @default.
- W2006800437 abstract "It is shown that the combination of a bare Pomeron with intercept ${stackrel{^}{ensuremath{alpha}}}_{P}(0)=0.85$ in conjunction with a reasonable set of secondary Regge trajectories and a canonical absorption prescription is capable of providing a good global fit to practically all ${0}^{ensuremath{-}}{frac{1}{2}}^{+}ensuremath{rightarrow}{0}^{ensuremath{-}}{frac{1}{2}}^{+}$ meson-nucleon scattering data up to lab momenta of 30 GeV/c. The bare Pomeron with intercept lower than 1 has a large real part which greatly facilitates the description of the data. At higher energies, renormalization effects can be expected to be important as inelastic diffraction events, and these lead to a renormalized Pomeron intercept very close to or equal to one. The value ${stackrel{^}{ensuremath{alpha}}}_{P}(0)=0.85$ used throughout this intermediate-energy fit is in agreement with current inclusive triple-Regge data and maximum-rapidity-gap distributions. It is also in agreement with certain strong-coupling ABFST (Amati-Bertocchi-Fubini-Stanghellini-Tonin) multiperipheral model calculations. For secondary effects, we have used a family of vector Regge trajectories ($ensuremath{rho},ensuremath{omega},{K}^{*}$) with a degenerate intercept of about 0.45, and tensor trajectories (${A}_{2},{K}^{**}$) with an intercept of about 0.25. A second vacuum pole emerges with intercept close to 0. The ${p}^{ensuremath{'}} (f)$ trajectory, not included here, can perhaps be expected to appear in conjunction with the renormalization of the Pomeron. Although no wrong-signature nonsense zeros are included in the parametrization, the $ensuremath{rho}ensuremath{-}{A}_{2}$ and ${K}^{*}ensuremath{-}{K}^{**}$ pole couplings are nevertheless very nearly exchange degenerate. SU(3) is used to relate most of the other couplings. The (pole + cut) helicity-flip $ensuremath{rho}ensuremath{-}{A}_{2}$ and ${K}^{*}ensuremath{-}{K}^{**}$ amplitudes also show considerable exchange-degenerate characteristics. We have used a standard absorption prescription to calculate the second-order bare Pomeron $(stackrel{^}{P})ensuremath{bigotimes}$ Reggeon cuts and $stackrel{^}{P}ensuremath{bigotimes}stackrel{^}{P}$ cuts. An unusual result emerges---the enhancement ${ensuremath{lambda}}_{i}$ factors for all cuts are less than one. This indicates the presence of higher-order cuts which thus dominate over inelastic intermediate-state production in this approach. The data used in this fit are a representative selection of ${0}^{ensuremath{-}}{frac{1}{2}}^{+}ensuremath{rightarrow}{0}^{ensuremath{-}}{frac{1}{2}}^{+}$ data (including $ensuremath{pi}N$ amplitude analysis, hypercharge-exchange differential cross sections and polarizations; ${ensuremath{pi}}^{ifmmodepmelsetextpmfi{}}p$ and ${K}^{ifmmodepmelsetextpmfi{}}p$ total and differential cross sections, polarizations, and $t=0$ real-to-imaginary ratios; and $ensuremath{pi}N$ and $mathrm{KN}$ charge-exchange differential cross sections and polarizations) up to ${p}_{mathrm{lab}}=30$ GeV/c and $|t|=1.5$ ${(mathrm{G}mathrm{e}mathrm{V}/mathit{c})}^{2}$." @default.
- W2006800437 created "2016-06-24" @default.
- W2006800437 creator A5018172884 @default.
- W2006800437 creator A5037505161 @default.
- W2006800437 date "1974-10-01" @default.
- W2006800437 modified "2023-09-23" @default.
- W2006800437 title "Global description of0−12+→0−12+reactions utilizing the bare Pomeron" @default.
- W2006800437 cites W1533026650 @default.
- W2006800437 cites W1536287518 @default.
- W2006800437 cites W1563569669 @default.
- W2006800437 cites W162128809 @default.
- W2006800437 cites W1967407871 @default.
- W2006800437 cites W1968175948 @default.
- W2006800437 cites W1974102880 @default.
- W2006800437 cites W1975099821 @default.
- W2006800437 cites W1975143724 @default.
- W2006800437 cites W1983694716 @default.
- W2006800437 cites W1988669949 @default.
- W2006800437 cites W1991290416 @default.
- W2006800437 cites W1993119001 @default.
- W2006800437 cites W1994752967 @default.
- W2006800437 cites W2001501615 @default.
- W2006800437 cites W2004469604 @default.
- W2006800437 cites W2007097555 @default.
- W2006800437 cites W2008145002 @default.
- W2006800437 cites W2017426375 @default.
- W2006800437 cites W2018108766 @default.
- W2006800437 cites W2018329813 @default.
- W2006800437 cites W2019542441 @default.
- W2006800437 cites W2019889438 @default.
- W2006800437 cites W2021069957 @default.
- W2006800437 cites W2023260105 @default.
- W2006800437 cites W2030005719 @default.
- W2006800437 cites W2032348363 @default.
- W2006800437 cites W2034628454 @default.
- W2006800437 cites W2034924896 @default.
- W2006800437 cites W2039294104 @default.
- W2006800437 cites W2045719865 @default.
- W2006800437 cites W2047187957 @default.
- W2006800437 cites W2048731237 @default.
- W2006800437 cites W2053176520 @default.
- W2006800437 cites W2053830906 @default.
- W2006800437 cites W2059030314 @default.
- W2006800437 cites W2064447669 @default.
- W2006800437 cites W2065669549 @default.
- W2006800437 cites W2067669697 @default.
- W2006800437 cites W2069089814 @default.
- W2006800437 cites W2071845789 @default.
- W2006800437 cites W2074008898 @default.
- W2006800437 cites W2075739637 @default.
- W2006800437 cites W2076427691 @default.
- W2006800437 cites W2076890613 @default.
- W2006800437 cites W2080682872 @default.
- W2006800437 cites W2084801022 @default.
- W2006800437 cites W2087490114 @default.
- W2006800437 cites W2089340228 @default.
- W2006800437 cites W2091124443 @default.
- W2006800437 cites W2091275529 @default.
- W2006800437 cites W2094922361 @default.
- W2006800437 cites W2095438521 @default.
- W2006800437 cites W2099732960 @default.
- W2006800437 cites W2118966921 @default.
- W2006800437 cites W2143535336 @default.
- W2006800437 cites W2167316821 @default.
- W2006800437 cites W2167973396 @default.
- W2006800437 cites W219150549 @default.
- W2006800437 cites W2258058029 @default.
- W2006800437 cites W2312341100 @default.
- W2006800437 cites W2313251369 @default.
- W2006800437 cites W2313477842 @default.
- W2006800437 cites W2314787129 @default.
- W2006800437 cites W2326985240 @default.
- W2006800437 cites W2776000500 @default.
- W2006800437 cites W3089907396 @default.
- W2006800437 cites W3124597676 @default.
- W2006800437 cites W4231093831 @default.
- W2006800437 cites W2012294678 @default.
- W2006800437 cites W95583835 @default.
- W2006800437 doi "https://doi.org/10.1103/physrevd.10.2102" @default.
- W2006800437 hasPublicationYear "1974" @default.
- W2006800437 type Work @default.
- W2006800437 sameAs 2006800437 @default.
- W2006800437 citedByCount "22" @default.
- W2006800437 crossrefType "journal-article" @default.
- W2006800437 hasAuthorship W2006800437A5018172884 @default.
- W2006800437 hasAuthorship W2006800437A5037505161 @default.
- W2006800437 hasConcept C109214941 @default.
- W2006800437 hasConcept C121332964 @default.
- W2006800437 hasConcept C130295795 @default.
- W2006800437 hasConcept C166124518 @default.
- W2006800437 hasConcept C172695262 @default.
- W2006800437 hasConcept C185544564 @default.
- W2006800437 hasConcept C19694890 @default.
- W2006800437 hasConcept C200006409 @default.
- W2006800437 hasConcept C2776103971 @default.
- W2006800437 hasConcept C2779557605 @default.
- W2006800437 hasConcept C37914503 @default.
- W2006800437 hasConcept C62520636 @default.