Matches in SemOpenAlex for { <https://semopenalex.org/work/W2006943967> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2006943967 endingPage "2128" @default.
- W2006943967 startingPage "2113" @default.
- W2006943967 abstract "In order to improve the utilization rate of spectroscopic data and texture information, this study proposes a method for optimal selection of spectrum and texture features based on automatic subspace division and rough set theory. This method takes advantage of rough set reduct ideology in order to realize the reduction of different types of ground object spectral features on the basis of the conventional subspace division method. In using this method, the primary spectral band based on spectral information can be determined. Then, the grey-level co-occurrence matrix method can be used to calculate the texture information of the primary spectral band and determine the reduction and optimization in order to obtain the final band based on the spectrum and texture information. Verification of this method is made by using CASI data of Heihe Region, China, and AVIRIS data of the Indiana Region, USA, and also using Support Vector Machine SVM classification of the original spectral, primary spectral, and final bands. The results indicate the following. 1 The method for optimal selection of the critical spectral band and texture band, based on the rough set theory, can efficiently improve the classification accuracy of high-spatial resolution remote-sensing images. However, the effects for the low-spatial resolution images are minimal. 2 For high-spatial-resolution remote-sensing images, such as roads, trenches, buildings, and other types of object with obvious textural features, the addition of image texture information can increase the degree of distinction of these different types and thereby improve the classification accuracy. However, the addition of the textural information for some objects with similar texture features will cause misclassification and reduce the classification accuracy for these types of images. 3 This method can realize the optimal selection of spectrum and texture bands of a hyperspectral image and has a certain universality. Also, the texture information will be richer and this method will be more practical through increasing the spatial resolution of images." @default.
- W2006943967 created "2016-06-24" @default.
- W2006943967 creator A5000893456 @default.
- W2006943967 creator A5022526821 @default.
- W2006943967 creator A5043529874 @default.
- W2006943967 creator A5048826252 @default.
- W2006943967 creator A5049543021 @default.
- W2006943967 creator A5066473046 @default.
- W2006943967 creator A5079247663 @default.
- W2006943967 date "2015-04-18" @default.
- W2006943967 modified "2023-10-18" @default.
- W2006943967 title "Hyperspectral data spectrum and texture band selection based on the subspace-rough set method" @default.
- W2006943967 cites W1969801270 @default.
- W2006943967 cites W2043945532 @default.
- W2006943967 cites W2077915736 @default.
- W2006943967 cites W2089137303 @default.
- W2006943967 cites W2124834959 @default.
- W2006943967 cites W2144188273 @default.
- W2006943967 cites W2148234194 @default.
- W2006943967 cites W2150566919 @default.
- W2006943967 cites W2155131749 @default.
- W2006943967 doi "https://doi.org/10.1080/01431161.2015.1034892" @default.
- W2006943967 hasPublicationYear "2015" @default.
- W2006943967 type Work @default.
- W2006943967 sameAs 2006943967 @default.
- W2006943967 citedByCount "7" @default.
- W2006943967 countsByYear W20069439672015 @default.
- W2006943967 countsByYear W20069439672016 @default.
- W2006943967 countsByYear W20069439672017 @default.
- W2006943967 countsByYear W20069439672020 @default.
- W2006943967 countsByYear W20069439672021 @default.
- W2006943967 countsByYear W20069439672022 @default.
- W2006943967 crossrefType "journal-article" @default.
- W2006943967 hasAuthorship W2006943967A5000893456 @default.
- W2006943967 hasAuthorship W2006943967A5022526821 @default.
- W2006943967 hasAuthorship W2006943967A5043529874 @default.
- W2006943967 hasAuthorship W2006943967A5048826252 @default.
- W2006943967 hasAuthorship W2006943967A5049543021 @default.
- W2006943967 hasAuthorship W2006943967A5066473046 @default.
- W2006943967 hasAuthorship W2006943967A5079247663 @default.
- W2006943967 hasConcept C111012933 @default.
- W2006943967 hasConcept C115961682 @default.
- W2006943967 hasConcept C121332964 @default.
- W2006943967 hasConcept C124101348 @default.
- W2006943967 hasConcept C127313418 @default.
- W2006943967 hasConcept C153180895 @default.
- W2006943967 hasConcept C154945302 @default.
- W2006943967 hasConcept C156778621 @default.
- W2006943967 hasConcept C159078339 @default.
- W2006943967 hasConcept C177264268 @default.
- W2006943967 hasConcept C199360897 @default.
- W2006943967 hasConcept C2781195486 @default.
- W2006943967 hasConcept C32834561 @default.
- W2006943967 hasConcept C41008148 @default.
- W2006943967 hasConcept C58489278 @default.
- W2006943967 hasConcept C62520636 @default.
- W2006943967 hasConcept C62649853 @default.
- W2006943967 hasConcept C81917197 @default.
- W2006943967 hasConceptScore W2006943967C111012933 @default.
- W2006943967 hasConceptScore W2006943967C115961682 @default.
- W2006943967 hasConceptScore W2006943967C121332964 @default.
- W2006943967 hasConceptScore W2006943967C124101348 @default.
- W2006943967 hasConceptScore W2006943967C127313418 @default.
- W2006943967 hasConceptScore W2006943967C153180895 @default.
- W2006943967 hasConceptScore W2006943967C154945302 @default.
- W2006943967 hasConceptScore W2006943967C156778621 @default.
- W2006943967 hasConceptScore W2006943967C159078339 @default.
- W2006943967 hasConceptScore W2006943967C177264268 @default.
- W2006943967 hasConceptScore W2006943967C199360897 @default.
- W2006943967 hasConceptScore W2006943967C2781195486 @default.
- W2006943967 hasConceptScore W2006943967C32834561 @default.
- W2006943967 hasConceptScore W2006943967C41008148 @default.
- W2006943967 hasConceptScore W2006943967C58489278 @default.
- W2006943967 hasConceptScore W2006943967C62520636 @default.
- W2006943967 hasConceptScore W2006943967C62649853 @default.
- W2006943967 hasConceptScore W2006943967C81917197 @default.
- W2006943967 hasFunder F4320321001 @default.
- W2006943967 hasFunder F4320335787 @default.
- W2006943967 hasIssue "8" @default.
- W2006943967 hasLocation W20069439671 @default.
- W2006943967 hasOpenAccess W2006943967 @default.
- W2006943967 hasPrimaryLocation W20069439671 @default.
- W2006943967 hasRelatedWork W1543345676 @default.
- W2006943967 hasRelatedWork W1585083011 @default.
- W2006943967 hasRelatedWork W2006943967 @default.
- W2006943967 hasRelatedWork W2008281991 @default.
- W2006943967 hasRelatedWork W2126880743 @default.
- W2006943967 hasRelatedWork W2362450124 @default.
- W2006943967 hasRelatedWork W2547150524 @default.
- W2006943967 hasRelatedWork W2783789044 @default.
- W2006943967 hasRelatedWork W2906581748 @default.
- W2006943967 hasRelatedWork W2909119362 @default.
- W2006943967 hasVolume "36" @default.
- W2006943967 isParatext "false" @default.
- W2006943967 isRetracted "false" @default.
- W2006943967 magId "2006943967" @default.
- W2006943967 workType "article" @default.