Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007010478> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2007010478 endingPage "9" @default.
- W2007010478 startingPage "1" @default.
- W2007010478 abstract "This paper is devoted to the study of the stability issue of the supercritical dissipative surface quasi-geostrophic equation with nondecay low-regular external force. Supposing that the weak solution <svg style=vertical-align:-2.3205pt;width:42.362499px; id=M1 height=15.1125 version=1.1 viewBox=0 0 42.362499 15.1125 width=42.362499 xmlns:xlink=http://www.w3.org/1999/xlink xmlns=http://www.w3.org/2000/svg> <g transform=matrix(.017,-0,0,-.017,.062,12.162)><path id=x1D703 d=M475 507q0 -83 -20 -172t-56 -167.5t-93.5 -129t-125.5 -50.5q-157 0 -157 227q0 78 21.5 164t59 161t96.5 123.5t126 48.5q79 0 114 -58t35 -147zM391 522q0 155 -81 155q-62 0 -111 -82.5t-73 -200.5h253q12 81 12 128zM373 346h-255q-12 -91 -12 -150q0 -72 20 -123
t63 -51q34 0 64 28.5t52.5 77t39 103t28.5 115.5z /></g><g transform=matrix(.017,-0,0,-.017,8.528,12.162)><path id=x28 d=M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z /></g><g transform=matrix(.017,-0,0,-.017,14.409,12.162)><path id=x1D465 d=M536 404q0 -17 -13.5 -31.5t-26.5 -14.5q-8 0 -15 10q-11 14 -25 14q-22 0 -67 -50q-47 -52 -68 -82l37 -102q31 -88 55 -88t78 59l16 -23q-32 -48 -68.5 -78t-65.5 -30q-19 0 -37.5 20t-29.5 53l-41 116q-72 -106 -114.5 -147.5t-79.5 -41.5q-21 0 -34.5 14t-13.5 37
q0 16 13.5 31.5t28.5 15.5q12 0 17 -11q5 -10 25 -10q22 0 57.5 36t89.5 111l-40 108q-22 58 -36 58q-21 0 -67 -57l-19 20q81 107 125 107q17 0 30 -22t39 -88l22 -55q68 92 108.5 128.5t74.5 36.5q20 0 32.5 -14t12.5 -30z /></g><g transform=matrix(.017,-0,0,-.017,23.912,12.162)><path id=x2C d=M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z /></g><g transform=matrix(.017,-0,0,-.017,30.609,12.162)><path id=x1D461 d=M324 430l-26 -36l-112 -4l-55 -265q-13 -66 7 -66q13 0 44.5 20t50.5 40l17 -24q-38 -40 -85.5 -73.5t-87.5 -33.5q-50 0 -21 138l55 262h-80l-2 8l25 34h66l25 99l78 63l10 -9l-37 -153h128z /></g><g transform=matrix(.017,-0,0,-.017,36.406,12.162)><path id=x29 d=M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z /></g> </svg> of the surface quasi-geostrophic equation with the force <svg style=vertical-align:-3.56265pt;width:160.7375px; id=M2 height=21.0875 version=1.1 viewBox=0 0 160.7375 21.0875 width=160.7375 xmlns:xlink=http://www.w3.org/1999/xlink xmlns=http://www.w3.org/2000/svg> <g transform=matrix(.017,-0,0,-.017,.062,16.588)><path id=x1D453 d=M619 670q0 -13 -9 -26t-18 -19q-13 -10 -25 2q-36 38 -66 38q-31 0 -54.5 -50t-45.5 -185h120l-20 -31l-107 -12q-23 -138 -57 -293q-27 -122 -55 -184.5t-75 -109.5q-60 -61 -114 -61q-25 0 -47.5 15t-22.5 31q0 17 31 44q11 8 20 -1q10 -11 31 -19t35 -8q26 0 47 19
q34 34 71 253l54 315h-90l-3 12l31 30h70q28 138 90 204q35 37 75 57.5t70 20.5q26 0 45 -14t19 -28z /></g><g transform=matrix(.017,-0,0,-.017,15.684,16.588)><path id=x2208 d=M448 1h-83q-118 0 -201.5 74.5t-83.5 179.5t83.5 179.5t201.5 74.5h83v-50h-84q-87 0 -150.5 -51.5t-73.5 -127.5h308v-50h-308q10 -76 73.5 -127.5t150.5 -51.5h84v-50z /></g><g transform=matrix(.017,-0,0,-.017,29.385,16.588)><path id=x1D43F d=M559 163q-23 -66 -68 -163h-474l6 26q62 4 79.5 19.5t28.5 75.5l78 409q7 35 8.5 49t-8 25t-24 13t-51.5 5l5 28h266l-6 -28q-65 -5 -79.5 -18t-25.5 -74l-76 -406q-10 -57 14 -75q12 -13 96 -13q93 0 126 29q41 40 76 109z /></g> <g transform=matrix(.012,-0,0,-.012,39.1,8.425)><path id=x32 d=M412 140l28 -9q0 -2 -35 -131h-373v23q112 112 161 170q59 70 92 127t33 115q0 63 -31 98t-86 35q-75 0 -137 -93l-22 20l57 81q55 59 135 59q69 0 118.5 -46.5t49.5 -122.5q0 -62 -29.5 -114t-102.5 -130l-141 -149h186q42 0 58.5 10.5t38.5 56.5z /></g> <g transform=matrix(.017,-0,0,-.017,45.438,16.588)><use xlink:href=#x28/></g><g transform=matrix(.017,-0,0,-.017,51.319,16.588)><path id=x30 d=M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105
q0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z /></g><g transform=matrix(.017,-0,0,-.017,59.478,16.588)><use xlink:href=#x2C/></g><g transform=matrix(.017,-0,0,-.017,66.176,16.588)><path id=x1D447 d=M649 676l-22 -187l-33 -2q3 56 -12 94q-8 20 -31.5 26.5t-86.5 6.5h-74l-90 -491q-4 -23 -6 -36.5t1 -25t7 -16.5t18 -9t27 -5t41 -3l-6 -28h-286l4 28q68 5 84 18.5t28 76.5l94 491h-55q-74 0 -100.5 -6t-41.5 -23q-24 -29 -54 -98l-32 1q32 98 53 188h22q7 -18 15 -22
t37 -4h417q23 0 33.5 5t25.5 21h23z /></g><g transform=matrix(.017,-0,0,-.017,77.497,16.588)><path id=x3B d=M114 412q23 0 39 -16t16 -41t-16 -41.5t-40 -16.5t-39.5 16.5t-15.5 41.5t15.5 41t40.5 16zM95 130q31 0 61 -30t30 -78q0 -53 -38 -88t-92 -52l-11 30q76 32 76 85q0 26 -17.5 43.5t-44.5 23.5q-13 3 -13 24q0 19 14.5 30.5t34.5 11.5z /></g><g transform=matrix(.017,-0,0,-.017,84.212,16.588)><path id=x1D43B d=M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28
h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z /></g> <g transform=matrix(.012,-0,0,-.012,99.125,8.425)><path id=x2212 d=M535 230h-483v50h483v-50z /></g><g transform=matrix(.012,-0,0,-.012,106.11,8.425)><path id=x1D6FC d=M545 106q-67 -118 -134 -118q-24 0 -40 37.5t-30 129.5h-2q-47 -72 -103 -119.5t-108 -47.5q-47 0 -76 45.5t-29 119.5q0 113 85 204t174 91q47 0 70 -33.5t43 -119.5h3q32 47 80 140l55 13l10 -9q-47 -80 -138 -201q17 -99 27.5 -136t22.5 -37q23 0 69 61zM333 204
q-14 98 -31 149.5t-50 51.5q-49 0 -94 -70t-45 -164q0 -55 15.5 -86t40.5 -31q70 0 164 150z /></g><g transform=matrix(.012,-0,0,-.012,112.868,8.425)><path id=x2F d=M368 703l-264 -866h-60l265 866h59z /></g><g transform=matrix(.012,-0,0,-.012,117.77,8.425)><use xlink:href=#x32/></g> <g transform=matrix(.017,-0,0,-.017,124.1,16.588)><use xlink:href=#x28/></g><g transform=matrix(.017,-0,0,-.017,129.982,16.588)><path id=x211D d=M751 18q-1 -4 -2 -13t-2 -13q-24 0 -35 1q-57 3 -92.5 23t-69.5 68q-21 30 -101 160q-13 22 -30.5 31t-54.5 9h-32v-159q0 -62 14 -77t74 -20v-28h-382v28q62 5 76 19.5t14 77.5v400q0 63 -14 77.5t-76 19.5v28h372q109 0 159 -34q67 -42 67 -131q0 -115 -127 -172
q27 -52 89 -144q49 -71 81 -104q31 -36 72 -47zM543 469q0 76 -42 112t-104 36q-41 0 -54 -10q-11 -7 -11 -44v-247h48q73 0 108 29q55 42 55 124zM290 131v390q0 62 -7.5 79.5t-30.5 17.5q-24 0 -31.5 -17.5t-7.5 -79.5v-390q0 -62 7.5 -79.5t31.5 -17.5q23 0 30.5 17.5
t7.5 79.5z /></g> <g transform=matrix(.012,-0,0,-.012,142.575,8.425)><use xlink:href=#x32/></g> <g transform=matrix(.017,-0,0,-.017,148.912,16.588)><use xlink:href=#x29/></g><g transform=matrix(.017,-0,0,-.017,154.794,16.588)><use xlink:href=#x29/></g> </svg> satisfies the growth condition in the critical BMO space <svg style=vertical-align:-2.3205pt;width:142.3125px; id=M3 height=18.725 version=1.1 viewBox=0 0 142.3125 18.725 width=142.3125 xmlns:xlink=http://www.w3.org/1999/xlink xmlns=http://www.w3.org/2000/svg> <g transform=matrix(.017,-0,0,-.017,.062,15.775)><path id=x2207 d=M599 626l-268 -633l-28 -8l-261 641v24h557v-24zM535 600h-390l194 -489z /></g><g transform=matrix(.017,-0,0,-.017,10.959,15.775)><use xlink:href=#x1D703/></g><g transform=matrix(.017,-0,0,-.017,24.133,15.775)><use xlink:href=#x2208/></g><g transform=matrix(.017,-0,0,-.017,37.834,15.775)><use xlink:href=#x1D43F/></g> <g transform=matrix(.012,-0,0,-.012,47.55,7.613)><path id=x31 d=M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z /></g> <g transform=matrix(.017,-0,0,-.017,53.888,15.775)><use xlink:href=#x28/></g><g transform=matrix(.017,-0,0,-.017,59.769,15.775)><use xlink:href=#x30/></g><g transform=matrix(.017,-0,0,-.017,67.928,15.775)><use xlink:href=#x2C/></g><g transform=matrix(.017,-0,0,-.017,74.626,15.775)><path id=x221E d=M983 225q0 -112 -67 -174.5t-150 -62.5q-91 0 -154.5 43.5t-113.5 129.5q-49 -85 -104 -129t-138 -44q-98 0 -158.5 66t-60.5 154q0 59 21 106.5t54.5 75.5t70.5 43t73 15q90 0 152.5 -43.5t112.5 -128.5q48 84 104.5 128t140.5 44q93 0 155 -65t62 -158zM478 196
q-27 49 -47 80t-50 67t-64 54t-73 18q-48 0 -81.5 -47t-33.5 -128q0 -96 37.5 -157.5t99.5 -61.5q68 0 117.5 47t94.5 128zM889 204q0 91 -35.5 151t-99.5 60q-68 0 -119 -47t-95 -127q27 -49 47 -80.5t50 -67.5t65 -54t74 -18q113 0 113 183z /></g><g transform=matrix(.017,-0,0,-.017,91.965,15.775)><use xlink:href=#x3B/></g><g transform=matrix(.017,-0,0,-.017,98.679,15.775)><path id=x42 d=M372 352v-2q176 -27 176 -159q0 -99 -95 -151q-73 -40 -196 -40h-221v28q65 5 78.5 19t13.5 76v404q0 63 -12 77t-72 18v28h257q102 0 150 -34q26 -18 41 -48.5t15 -65.5q0 -111 -135 -150zM213 362h47q80 0 117.5 32t37.5 96q0 56 -33 92t-100 36q-41 0 -56 -10
q-13 -8 -13 -50v-196zM213 328v-203q0 -54 17 -72.5t66 -18.5q67 1 110.5 37t43.5 110q0 147 -192 147h-45z /></g><g transform=matrix(.017,-0,0,-.017,108.674,15.775)><path id=x4D d=M861 0h-263v28q61 5 73 22t12 97l-4 408h-4l-244 -548h-20l-224 534h-2l-15 -285q-5 -98 -3 -166q1 -34 19.5 -45t72.5 -17v-28h-233v28q45 5 62.5 17t22.5 43q11 65 19 183l14 208q3 36 3.5 55t-2.5 37.5t-6.5 25t-16.5 13t-25.5 8t-39.5 4.5v28h164l228 -501l232 501
h170v-28q-68 -6 -81 -21.5t-11 -91.5l9 -362q2 -80 15 -97t78 -22v-28z /></g><g transform=matrix(.017,-0,0,-.017,123.684,15.775)><path id=x4F d=M381 665q131 0 226.5 -93t95.5 -239q0 -158 -96 -253t-238 -95q-137 0 -231 95t-94 238q0 142 92.5 244.5t244.5 102.5zM359 629q-89 0 -151 -74.5t-62 -208.5q0 -141 69 -233t175 -92q90 0 150.5 74t60.5 211q0 152 -69 237.5t-173 85.5z /></g><g transform=matrix(.017,-0,0,-.017,136.382,15.775)><use xlink:href=#x29/></g> </svg>, it is proved that every perturbed weak solution <svg style=vertical-align:-2.3205pt;width:26.15px; id=M4 height=19.362499 version=1.1 viewBox=0 0 26.15 19.362499 width=26.15 xmlns:xlink=http://www.w3.org/1999/xlink xmlns=http://www.w3.org/2000/svg> <g transform=matrix(1.25,0,0,-1.25,90,90)> <path d=m -71.95,70.93 6.77,0 style=fill:none;stroke:#000000;stroke-width:0.68000001;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-opacity:1;stroke-dasharray:none /> </g> <g transform=matrix(.017,-0,0,-.017,.062,16.412)><use xlink:href=#x1D703/></g><g transform=matrix(.017,-0,0,-.017,8.528,16.412)><use xlink:href=#x28/></g><g transform=matrix(.017,-0,0,-.017,14.409,16.412)><use xlink:href=#x1D461/></g><g transform=matrix(.017,-0,0,-.017,20.206,16.412)><use xlink:href=#x29/></g> </svg> converges asymptotically to solution <svg style=vertical-align:-2.3205pt;width:26.15px; id=M5 height=15.1125 version=1.1 viewBox=0 0 26.15 15.1125 width=26.15 xmlns:xlink=http://www.w3.org/1999/xlink xmlns=http://www.w3.org/2000/svg> <g transform=matrix(.017,-0,0,-.017,.062,12.162)><use xlink:href=#x1D703/></g><g transform=matrix(.017,-0,0,-.017,8.528,12.162)><use xlink:href=#x28/></g><g transform=matrix(.017,-0,0,-.017,14.409,12.162)><use xlink:href=#x1D461/></g><g transform=matrix(.017,-0,0,-.017,20.206,12.162)><use xlink:href=#x29/></g> </svg> of the original surface quasi-geostrophic equation. The initial and external forcing perturbations are allowed to be large." @default.
- W2007010478 created "2016-06-24" @default.
- W2007010478 creator A5002475224 @default.
- W2007010478 creator A5057408349 @default.
- W2007010478 creator A5059228141 @default.
- W2007010478 date "2013-01-01" @default.
- W2007010478 modified "2023-09-27" @default.
- W2007010478 title "Stability Analysis of the Supercritical Surface Quasi-Geostrophic Equation" @default.
- W2007010478 cites W1527296550 @default.
- W2007010478 cites W1969398483 @default.
- W2007010478 cites W1974618513 @default.
- W2007010478 cites W1976694225 @default.
- W2007010478 cites W1999557954 @default.
- W2007010478 cites W2006455026 @default.
- W2007010478 cites W2018605891 @default.
- W2007010478 cites W2018766993 @default.
- W2007010478 cites W2019404568 @default.
- W2007010478 cites W2019995160 @default.
- W2007010478 cites W2022506384 @default.
- W2007010478 cites W2028218436 @default.
- W2007010478 cites W2034720368 @default.
- W2007010478 cites W2041193735 @default.
- W2007010478 cites W2053851474 @default.
- W2007010478 cites W2059928610 @default.
- W2007010478 cites W2076701093 @default.
- W2007010478 cites W2076924473 @default.
- W2007010478 cites W2085516911 @default.
- W2007010478 cites W2095005134 @default.
- W2007010478 cites W2095209716 @default.
- W2007010478 cites W2099711936 @default.
- W2007010478 cites W2102375137 @default.
- W2007010478 cites W2123640699 @default.
- W2007010478 cites W2135860354 @default.
- W2007010478 cites W2136343001 @default.
- W2007010478 cites W2146448840 @default.
- W2007010478 cites W2150601193 @default.
- W2007010478 cites W2170523565 @default.
- W2007010478 cites W3100870217 @default.
- W2007010478 cites W3102247990 @default.
- W2007010478 doi "https://doi.org/10.1155/2013/620320" @default.
- W2007010478 hasPublicationYear "2013" @default.
- W2007010478 type Work @default.
- W2007010478 sameAs 2007010478 @default.
- W2007010478 citedByCount "3" @default.
- W2007010478 countsByYear W20070104782015 @default.
- W2007010478 countsByYear W20070104782018 @default.
- W2007010478 crossrefType "journal-article" @default.
- W2007010478 hasAuthorship W2007010478A5002475224 @default.
- W2007010478 hasAuthorship W2007010478A5057408349 @default.
- W2007010478 hasAuthorship W2007010478A5059228141 @default.
- W2007010478 hasBestOaLocation W20070104781 @default.
- W2007010478 hasConcept C111368507 @default.
- W2007010478 hasConcept C112972136 @default.
- W2007010478 hasConcept C118419359 @default.
- W2007010478 hasConcept C119857082 @default.
- W2007010478 hasConcept C121332964 @default.
- W2007010478 hasConcept C127313418 @default.
- W2007010478 hasConcept C133877212 @default.
- W2007010478 hasConcept C2524010 @default.
- W2007010478 hasConcept C2776799497 @default.
- W2007010478 hasConcept C33923547 @default.
- W2007010478 hasConcept C41008148 @default.
- W2007010478 hasConcept C97355855 @default.
- W2007010478 hasConceptScore W2007010478C111368507 @default.
- W2007010478 hasConceptScore W2007010478C112972136 @default.
- W2007010478 hasConceptScore W2007010478C118419359 @default.
- W2007010478 hasConceptScore W2007010478C119857082 @default.
- W2007010478 hasConceptScore W2007010478C121332964 @default.
- W2007010478 hasConceptScore W2007010478C127313418 @default.
- W2007010478 hasConceptScore W2007010478C133877212 @default.
- W2007010478 hasConceptScore W2007010478C2524010 @default.
- W2007010478 hasConceptScore W2007010478C2776799497 @default.
- W2007010478 hasConceptScore W2007010478C33923547 @default.
- W2007010478 hasConceptScore W2007010478C41008148 @default.
- W2007010478 hasConceptScore W2007010478C97355855 @default.
- W2007010478 hasFunder F4320321001 @default.
- W2007010478 hasLocation W20070104781 @default.
- W2007010478 hasLocation W20070104782 @default.
- W2007010478 hasLocation W20070104783 @default.
- W2007010478 hasOpenAccess W2007010478 @default.
- W2007010478 hasPrimaryLocation W20070104781 @default.
- W2007010478 hasRelatedWork W1585827900 @default.
- W2007010478 hasRelatedWork W2002593867 @default.
- W2007010478 hasRelatedWork W2013082111 @default.
- W2007010478 hasRelatedWork W2088849544 @default.
- W2007010478 hasRelatedWork W2183409606 @default.
- W2007010478 hasRelatedWork W2325858130 @default.
- W2007010478 hasRelatedWork W2798182210 @default.
- W2007010478 hasRelatedWork W3028988506 @default.
- W2007010478 hasRelatedWork W3131522372 @default.
- W2007010478 hasRelatedWork W4248921569 @default.
- W2007010478 hasVolume "2013" @default.
- W2007010478 isParatext "false" @default.
- W2007010478 isRetracted "false" @default.
- W2007010478 magId "2007010478" @default.
- W2007010478 workType "article" @default.