Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007028986> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2007028986 abstract "Vol. 120, No. 7 CorrespondenceOpen AccessApproaches to Human Health Risk Assessment Based on the Signal-To-Noise Crossover Dose Weihsueh A. Chiu, Kathryn Z. Guyton, Karen Hogan, and Jennifer Jinot Weihsueh A. Chiu Search for more papers by this author , Kathryn Z. Guyton Search for more papers by this author , Karen Hogan Search for more papers by this author , and Jennifer Jinot Search for more papers by this author Published:1 July 2012https://doi.org/10.1289/ehp.1205212Cited by:4AboutSectionsPDF ToolsDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InReddit We acknowledge the effort of Sand et al. (2011) in striving to develop a transparent, objective procedure for point of departure (POD) estimation, as encouraged by scien-tific review groups (National Research Council 2009). Although additional charac-teri-za-tion of the statistical properties of the signal-to-noise crossover dose (SNCD) may be warranted, the goal of Sand et al. (2011) appears consistent with the intent of the POD to charac-terize “the beginning of extrapolation to lower doses” [U.S. Environmental Protection Agency (EPA) 2005]. In this letter we respond to the authors’ illustration of their approach using cancer bio-assay data to develop reference doses (RfDs) that target a 1/1,000 risk through linear extrapolation from the POD by highlighting opportunities to augment their statistically based approach with biological considerations.For most carcinogens, the U.S. EPA develops cancer potency estimates as follows (U.S. EPA 2005). A POD associated with a benchmark response level (BMR) is derived and converted to human-equivalent units (incorporating information about cross-species dose scaling). The BMR is then divided by the human-equivalent POD to obtain a potency estimate, under the assumption that risks extrapolate linearly with doses below the BMR. For Sand et al. (2011), the upper-bound extra risk estimate (UERSNCD) is the BMR associated with the SNCD, but we recom-mend expressing SNCDs in human equivalents before deriving potency estimates.For nonlinear extrapolation resulting in a RfD (which the U.S. EPA uses for non-cancer effects and carcinogens with a threshold mode of action), Sand et al. (2011) chose to linearly extrapolate to a 1/1,000 risk in the test animal, which they considered analogous to applying a 100-fold uncertainty factor to a BMDL10 (lower bound on the benchmark dose corresponding to 10% extra risk). Several aspects of this proposal merit further considera-tion. First, margins of exposure much larger than 100-fold would be typical for cancer. Furthermore, whereas linear extrapo-la-tion involves extrapolation in the same population to a smaller level of effect, the standard uncertainty factor approach involves extrapolation across populations at a fixed level of effect. The alternative we propose separately accounts for these biologically unrelated processes.Motivating our proposal is the need highlighted by Sand et al. (2011) to clearly separate statistical factors supporting the level of effect associated with the POD while also fully incorporating biological considerations. We propose specifying “target” effect levels (TELs) associated with different end points based on biological considerations, independent of data set. The TELs could then be compared with the lowest practical BMR for a given data set—the UERSNCD used by Sand et al. The UERSNCD/TEL ratio is a diagnostic of the extent of extrapolation to the TEL. If UERSNCD ≤ TEL, then the BMD at the TEL does not involve extrapo-la-tion and can serve as the POD. For a UERSNCD > TEL, the greater the ratio, the greater the uncertainty in the BMD at the TEL from extrapo-la-tion below the SNCD. In this case, the SNCD could serve as the POD, and the gap between the UERSNCD and the TEL could be bridged by an additional factor (analo-gous to the LOAEL-to-NOAEL factor) or linear extrapolation. Then, inter-species, intra-species, and any other adjustments for deriving RfDs would be applied as usual. Thus, this approach separately takes into account biological considerations related to the severity of the end point (via the TEL), statistical considerations related to the study data (via the UERSNCD), and adjustments from the test species to sensitive humans (via uncertainty factors or chemical-specific adjustments).In sum, the work of Sand et al. (2011)advances the development of approaches for providing a transparent, objective method to demark where “extrapolation begins.” However, for human health risk assessment, we propose augmenting statistically based approaches so that inter- and intra-species adjustments and biological considerations relating to the end points are explicitly addressed. Although consensus on specifying TELs may be challenging, particularly for precursor or toxico-genomic end points, clearly separating biological and statistical considerations will enhance the transparency and consistency of chemical assessments.The views in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.The authors declare they have no actual or potential competing financial interests.ReferencesNational Research Council. 2009. Science and Decisions: Advancing Risk Assessment.Washington, DC:National Academies Press. Google ScholarSand S, Portier CJ, Krewski D. 2011. A signal-to-noise cross-over dose as the point of departure for health risk assessment.Environ Health Perspect 119:1766-177421813365. Link, Google ScholarU.S. EPA (U.S. Environmental Protection Agency). 2005. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001F. Washington, DC:U.S. EPA. Available: http://www.epa.gov/raf/publications/pdfs/CANCER_GUIDELINES_FINAL_3-25-05.pdf [accessed 8 June 2012]. Google ScholarFiguresReferencesRelatedDetailsCited bySand S, Parham F, Portier C, Tice R and Krewski D (2016) Comparison of Points of Departure for Health Risk Assessment Based on High-Throughput Screening Data, Environmental Health Perspectives, 125:4, (623-633), Online publication date: 1-Apr-2017. Dourson M, Becker R, Haber L, Pottenger L, Bredfeldt T and Fenner-Crisp P (2013) Advancing human health risk assessment: Integrating recent advisory committee recommendations, Critical Reviews in Toxicology, 10.3109/10408444.2013.807223, 43:6, (467-492), Online publication date: 1-Jul-2013. Parfett C, Williams A, Zheng J and Zhou G (2013) Gene batteries and synexpression groups applied in a multivariate statistical approach to dose–response analysis of toxicogenomic data, Regulatory Toxicology and Pharmacology, 10.1016/j.yrtph.2013.06.005, 67:1, (63-74), Online publication date: 1-Oct-2013. Krewski D, Andersen M, Tyshenko M, Krishnan K, Hartung T, Boekelheide K, Wambaugh J, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T and Cote I (2019) Toxicity testing in the 21st century: progress in the past decade and future perspectives, Archives of Toxicology, 10.1007/s00204-019-02613-4 Vol. 120, No. 7 July 2012Metrics About Article Metrics Publication History Originally published2 July 2012Published in print1 July 2012 Financial disclosuresPDF download License information EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. Note to readers with disabilities EHP strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in EHP articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact [email protected]. Our staff will work with you to assess and meet your accessibility needs within 3 working days." @default.
- W2007028986 created "2016-06-24" @default.
- W2007028986 creator A5044109032 @default.
- W2007028986 creator A5054226597 @default.
- W2007028986 creator A5054500526 @default.
- W2007028986 creator A5080621867 @default.
- W2007028986 date "2012-07-01" @default.
- W2007028986 modified "2023-10-14" @default.
- W2007028986 title "Approaches to Human Health Risk Assessment Based on the Signal-To-Noise Crossover Dose" @default.
- W2007028986 cites W2076331815 @default.
- W2007028986 doi "https://doi.org/10.1289/ehp.1205212" @default.
- W2007028986 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3404683" @default.
- W2007028986 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22760062" @default.
- W2007028986 hasPublicationYear "2012" @default.
- W2007028986 type Work @default.
- W2007028986 sameAs 2007028986 @default.
- W2007028986 citedByCount "3" @default.
- W2007028986 countsByYear W20070289862013 @default.
- W2007028986 countsByYear W20070289862017 @default.
- W2007028986 crossrefType "journal-article" @default.
- W2007028986 hasAuthorship W2007028986A5044109032 @default.
- W2007028986 hasAuthorship W2007028986A5054226597 @default.
- W2007028986 hasAuthorship W2007028986A5054500526 @default.
- W2007028986 hasAuthorship W2007028986A5080621867 @default.
- W2007028986 hasBestOaLocation W20070289861 @default.
- W2007028986 hasConcept C115961682 @default.
- W2007028986 hasConcept C12174686 @default.
- W2007028986 hasConcept C122507166 @default.
- W2007028986 hasConcept C142724271 @default.
- W2007028986 hasConcept C154945302 @default.
- W2007028986 hasConcept C204787440 @default.
- W2007028986 hasConcept C27081682 @default.
- W2007028986 hasConcept C2987857752 @default.
- W2007028986 hasConcept C38652104 @default.
- W2007028986 hasConcept C41008148 @default.
- W2007028986 hasConcept C60644358 @default.
- W2007028986 hasConcept C71924100 @default.
- W2007028986 hasConcept C86803240 @default.
- W2007028986 hasConcept C87813604 @default.
- W2007028986 hasConcept C99454951 @default.
- W2007028986 hasConcept C99498987 @default.
- W2007028986 hasConceptScore W2007028986C115961682 @default.
- W2007028986 hasConceptScore W2007028986C12174686 @default.
- W2007028986 hasConceptScore W2007028986C122507166 @default.
- W2007028986 hasConceptScore W2007028986C142724271 @default.
- W2007028986 hasConceptScore W2007028986C154945302 @default.
- W2007028986 hasConceptScore W2007028986C204787440 @default.
- W2007028986 hasConceptScore W2007028986C27081682 @default.
- W2007028986 hasConceptScore W2007028986C2987857752 @default.
- W2007028986 hasConceptScore W2007028986C38652104 @default.
- W2007028986 hasConceptScore W2007028986C41008148 @default.
- W2007028986 hasConceptScore W2007028986C60644358 @default.
- W2007028986 hasConceptScore W2007028986C71924100 @default.
- W2007028986 hasConceptScore W2007028986C86803240 @default.
- W2007028986 hasConceptScore W2007028986C87813604 @default.
- W2007028986 hasConceptScore W2007028986C99454951 @default.
- W2007028986 hasConceptScore W2007028986C99498987 @default.
- W2007028986 hasIssue "7" @default.
- W2007028986 hasLocation W20070289861 @default.
- W2007028986 hasLocation W20070289862 @default.
- W2007028986 hasLocation W20070289863 @default.
- W2007028986 hasLocation W20070289864 @default.
- W2007028986 hasOpenAccess W2007028986 @default.
- W2007028986 hasPrimaryLocation W20070289861 @default.
- W2007028986 hasRelatedWork W2074934507 @default.
- W2007028986 hasRelatedWork W2115615606 @default.
- W2007028986 hasRelatedWork W2182574077 @default.
- W2007028986 hasRelatedWork W2221389336 @default.
- W2007028986 hasRelatedWork W2385230354 @default.
- W2007028986 hasRelatedWork W2385389452 @default.
- W2007028986 hasRelatedWork W2392619340 @default.
- W2007028986 hasRelatedWork W2793983480 @default.
- W2007028986 hasRelatedWork W2949557810 @default.
- W2007028986 hasRelatedWork W3040916989 @default.
- W2007028986 hasVolume "120" @default.
- W2007028986 isParatext "false" @default.
- W2007028986 isRetracted "false" @default.
- W2007028986 magId "2007028986" @default.
- W2007028986 workType "article" @default.