Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007146523> ?p ?o ?g. }
- W2007146523 endingPage "205" @default.
- W2007146523 startingPage "194" @default.
- W2007146523 abstract "The increasing demands of location-based services have spurred the rapid development of indoor positioning system and indoor localization system interchangeably (IPSs). However, the performance of IPSs suffers from noisy measurements. In this paper, two kinds of robust extreme learning machines (RELMs), corresponding to the close-to-mean constraint, and the small-residual constraint, have been proposed to address the issue of noisy measurements in IPSs. Based on whether the feature mapping in extreme learning machine is explicit, we respectively provide random-hidden-nodes and kernelized formulations of RELMs by second order cone programming. Furthermore, the computation of the covariance in feature space is discussed. Simulations and real-world indoor localization experiments are extensively carried out and the results demonstrate that the proposed algorithms can not only improve the accuracy and repeatability, but also reduce the deviation and worst case error of IPSs compared with other baseline algorithms." @default.
- W2007146523 created "2016-06-24" @default.
- W2007146523 creator A5007257279 @default.
- W2007146523 creator A5025731189 @default.
- W2007146523 creator A5039966527 @default.
- W2007146523 creator A5061746912 @default.
- W2007146523 creator A5088007042 @default.
- W2007146523 date "2016-01-01" @default.
- W2007146523 modified "2023-10-15" @default.
- W2007146523 title "Robust Extreme Learning Machine With its Application to Indoor Positioning" @default.
- W2007146523 cites W1496317909 @default.
- W2007146523 cites W1964357740 @default.
- W2007146523 cites W1980713635 @default.
- W2007146523 cites W1994292816 @default.
- W2007146523 cites W1997399503 @default.
- W2007146523 cites W1999196773 @default.
- W2007146523 cites W2017495206 @default.
- W2007146523 cites W2018235121 @default.
- W2007146523 cites W2026131661 @default.
- W2007146523 cites W2026854879 @default.
- W2007146523 cites W2041328702 @default.
- W2007146523 cites W2042184006 @default.
- W2007146523 cites W2045970963 @default.
- W2007146523 cites W2065060269 @default.
- W2007146523 cites W2080616066 @default.
- W2007146523 cites W2089782020 @default.
- W2007146523 cites W2098123159 @default.
- W2007146523 cites W2100989187 @default.
- W2007146523 cites W2101674911 @default.
- W2007146523 cites W2111072639 @default.
- W2007146523 cites W2122040390 @default.
- W2007146523 cites W2131116400 @default.
- W2007146523 cites W2140095548 @default.
- W2007146523 cites W2141695047 @default.
- W2007146523 cites W2149690045 @default.
- W2007146523 cites W2157595416 @default.
- W2007146523 cites W2159811720 @default.
- W2007146523 cites W2163572752 @default.
- W2007146523 cites W2163993204 @default.
- W2007146523 cites W4239510810 @default.
- W2007146523 cites W4379358956 @default.
- W2007146523 cites W595252221 @default.
- W2007146523 doi "https://doi.org/10.1109/tcyb.2015.2399420" @default.
- W2007146523 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26684258" @default.
- W2007146523 hasPublicationYear "2016" @default.
- W2007146523 type Work @default.
- W2007146523 sameAs 2007146523 @default.
- W2007146523 citedByCount "98" @default.
- W2007146523 countsByYear W20071465232015 @default.
- W2007146523 countsByYear W20071465232016 @default.
- W2007146523 countsByYear W20071465232017 @default.
- W2007146523 countsByYear W20071465232018 @default.
- W2007146523 countsByYear W20071465232019 @default.
- W2007146523 countsByYear W20071465232020 @default.
- W2007146523 countsByYear W20071465232021 @default.
- W2007146523 countsByYear W20071465232022 @default.
- W2007146523 countsByYear W20071465232023 @default.
- W2007146523 crossrefType "journal-article" @default.
- W2007146523 hasAuthorship W2007146523A5007257279 @default.
- W2007146523 hasAuthorship W2007146523A5025731189 @default.
- W2007146523 hasAuthorship W2007146523A5039966527 @default.
- W2007146523 hasAuthorship W2007146523A5061746912 @default.
- W2007146523 hasAuthorship W2007146523A5088007042 @default.
- W2007146523 hasConcept C105795698 @default.
- W2007146523 hasConcept C11413529 @default.
- W2007146523 hasConcept C119857082 @default.
- W2007146523 hasConcept C138885662 @default.
- W2007146523 hasConcept C154945302 @default.
- W2007146523 hasConcept C155512373 @default.
- W2007146523 hasConcept C178650346 @default.
- W2007146523 hasConcept C2524010 @default.
- W2007146523 hasConcept C2776036281 @default.
- W2007146523 hasConcept C2776401178 @default.
- W2007146523 hasConcept C2780150128 @default.
- W2007146523 hasConcept C31972630 @default.
- W2007146523 hasConcept C33923547 @default.
- W2007146523 hasConcept C41008148 @default.
- W2007146523 hasConcept C41895202 @default.
- W2007146523 hasConcept C45374587 @default.
- W2007146523 hasConcept C50644808 @default.
- W2007146523 hasConcept C79403827 @default.
- W2007146523 hasConceptScore W2007146523C105795698 @default.
- W2007146523 hasConceptScore W2007146523C11413529 @default.
- W2007146523 hasConceptScore W2007146523C119857082 @default.
- W2007146523 hasConceptScore W2007146523C138885662 @default.
- W2007146523 hasConceptScore W2007146523C154945302 @default.
- W2007146523 hasConceptScore W2007146523C155512373 @default.
- W2007146523 hasConceptScore W2007146523C178650346 @default.
- W2007146523 hasConceptScore W2007146523C2524010 @default.
- W2007146523 hasConceptScore W2007146523C2776036281 @default.
- W2007146523 hasConceptScore W2007146523C2776401178 @default.
- W2007146523 hasConceptScore W2007146523C2780150128 @default.
- W2007146523 hasConceptScore W2007146523C31972630 @default.
- W2007146523 hasConceptScore W2007146523C33923547 @default.
- W2007146523 hasConceptScore W2007146523C41008148 @default.
- W2007146523 hasConceptScore W2007146523C41895202 @default.
- W2007146523 hasConceptScore W2007146523C45374587 @default.
- W2007146523 hasConceptScore W2007146523C50644808 @default.