Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007161495> ?p ?o ?g. }
- W2007161495 endingPage "278" @default.
- W2007161495 startingPage "272" @default.
- W2007161495 abstract "The Journal of Clinical PharmacologyVolume 52, Issue 2 p. 272-278 Dapsone-Associated Methemoglobinemia in a Patient With Slow NAT2*5B Haplotype and Impaired Cytochrome b5 Reductase Activity Dr Mahmoud Abouraya DVM, Dr Mahmoud Abouraya DVM Department of Medical Sciences, University of Wisconsin—MadisonSearch for more papers by this authorDr James C. Sacco PhD, Dr James C. Sacco PhD Department of Medical Sciences, University of Wisconsin—MadisonSearch for more papers by this authorDr Kristie Hayes DVM, MS, Dr Kristie Hayes DVM, MS Department of Medical Sciences, University of Wisconsin—MadisonSearch for more papers by this authorDr Sajeve Thomas MD, Dr Sajeve Thomas MD Division of Hematology and Oncology, College of Medicine, University of Florida, Gainesville, FloridaSearch for more papers by this authorDr Craig S. Kitchens MD, Dr Craig S. Kitchens MD Division of Hematology and Oncology, College of Medicine, University of Florida, Gainesville, FloridaSearch for more papers by this authorDr Lauren A. Trepanier DVM, PhD, Corresponding Author Dr Lauren A. Trepanier DVM, PhD Department of Medical Sciences, University of Wisconsin—Madison Department of Medical Sciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706-1102; e-mail: [email protected].Search for more papers by this author Dr Mahmoud Abouraya DVM, Dr Mahmoud Abouraya DVM Department of Medical Sciences, University of Wisconsin—MadisonSearch for more papers by this authorDr James C. Sacco PhD, Dr James C. Sacco PhD Department of Medical Sciences, University of Wisconsin—MadisonSearch for more papers by this authorDr Kristie Hayes DVM, MS, Dr Kristie Hayes DVM, MS Department of Medical Sciences, University of Wisconsin—MadisonSearch for more papers by this authorDr Sajeve Thomas MD, Dr Sajeve Thomas MD Division of Hematology and Oncology, College of Medicine, University of Florida, Gainesville, FloridaSearch for more papers by this authorDr Craig S. Kitchens MD, Dr Craig S. Kitchens MD Division of Hematology and Oncology, College of Medicine, University of Florida, Gainesville, FloridaSearch for more papers by this authorDr Lauren A. Trepanier DVM, PhD, Corresponding Author Dr Lauren A. Trepanier DVM, PhD Department of Medical Sciences, University of Wisconsin—Madison Department of Medical Sciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706-1102; e-mail: [email protected].Search for more papers by this author First published: 07 March 2013 https://doi.org/10.1177/0091270010393343Citations: 6Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL REFERENCES 1 Giullian JA, Cavanaugh K, Schaefer H. Lower risk of urinary tract infection with low-dose trimethoprim/sulfamethoxazole compared with dapsone prophylaxis in older renal transplant patients on a rapid steroid-withdrawal immunosuppression regimen. Clin Transplant. 2009; 24: 636– 42. 2 Ash-Bernal R, Wise R, Wright SM. Acquired methemoglobinemia: a retrospective series of 138 cases at 2 teaching hospitals. Medicine (Baltimore). 2004; 83: 265– 273. 3 Reilly T, Woster P, Svensson C. Methemoglobin formation by hydroxylamine metabolites of sulfamethoxazole and dapsone: implications for differences in adverse drugs reactions. J Pharmacol Exp Ther. 1999; 288: 951– 959. 4 Ganesan S, Tekwani BL, Sahu R, Tripathi LM, Walker LA. Cytochrome P(450)-dependent toxic effects of primaquine on human erythrocytes. Toxicol Appl Pharmacol. 2009; 241: 14– 22. 5 Winter HR, Wang Y, Unadkat JD. CYP2C8/9 mediate dapsone N-hydroxylation at clinical concentrations of dapsone. Drug Metab Dispos. 2000; 28: 865– 868. 6 Sim SC, Risinger C, Dahl ML, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006; 79: 103– 113. 7 Kurian J, Bajad S, Miller J, Chin N, Trepanier L. NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans. J Pharmacol Exp Ther. 2004; 311: 1171– 1178. 8 Palamanda JR, Hickman D, Ward A, Sim E, Romkes-Sparks M, Unadkat JD. Dapsone acetylation by human liver arylamine N-acetyltransferases and interaction with antiopportunistic infection drugs. Drug Metab Dispos. 1995; 23: 473– 477. 9 Bluhm R, Adedoyin A, McCarver D, Branch R. Development of dapsone toxicity in patients with inflammatory dermatoses: activity of acetylation and hydroxylation of dapsone as risk factors. Clin Pharmacol Ther. 1999; 65: 598– 605. 10 Hoffmann TK, von Schmiedeberg S, Wulferink M, et al. Dapsone-induced agranulocytosis: the role of xenobiotic-metabolizing enzymes demonstrated by a case report. Hautarzt. 2005; 56: 673– 677. 11 Rodriguez M, Fishman JA. Prevention of infection due to Pneumocystis spp. in human immunodeficiency virus-negative immunocompromised patients. Clin Microbiol Rev. 2004; 17: 770– 782. 12 Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med. 1999; 34: 646– 656. 13 Fitzsimmons S, Workman P, Grever M, Paull K, Camalier R, Lewis A. Reductase enzyme expression across the NCI tumor cell line panel: correlation with sensitivity to mitomycin C and EO9. J Natl Cancer Inst. 1996; 88: 259– 269. 14 Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55: 611– 622. 15 Sacco J, Trepanier L. Cytochrome b5 and NADH cytochrome b5 reductase: genotype-phenotype correlations for hydroxylamine reduction. Pharmacogenet Genom. 2010; 20: 26– 37. 16 Huang N, Dardis A, Miller W. Regulation of cytochrome b5 gene transcription by Sp3, GATA-6 and SF1 in human adrenal NCI-H295A cells [published online ahead of print April 14, 2005]. Mol Endocrinol. 2005; 19: 2020– 2034. 17 Toyoda A, Fukumaki A, Hattori M, Sakaki Y. Mode of activation of the GC box/Sp1-dependent promoter of the human NADH-cytochrome b5 reductase-encoding gene. Gene. 1995; 164: 351– 355. 18 Jones PA. The DNA methylation paradox. Trends Genet. 1999; 15: 34– 37. 19 Cribb AE, Grant DM, Miller MA, Spielberg SP. Expression of monomorphic arylamine N-acetyltransferase (NAT1) in human leukocytes. J Pharmacol Exp Ther. 1991; 259: 1241– 1246. 20 Dunford LM, Roy DM, Hahn TE, et al. Dapsone-induced methemoglobinemia after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2006; 12: 241– 242. 21 Plotkin JS, Buell JF, Njoku MJ, et al. Methemoglobinemia associated with dapsone treatment in solid organ transplant recipients: a two-case report and review. Liver Transpl Surg. 1997; 3: 149– 152. 22 Talarico JF, Metro DG. Presentation of dapsone-induced methemoglobinemia in a patient status post small bowel transplant. J Clin Anesth. 2005; 17: 568– 570. 23 Ward KE, McCarthy MW. Dapsone-induced methemoglobinemia. Ann Pharmacother. 1998; 32: 549– 553. 24 Walker JG, Kadia T, Brown L, Juneja HS, de Groot JF. Dapsone induced methemoglobinemia in a patient with glioblastoma. J Neurooncol. 2009; 94: 149– 152. 25 Naik PM, Lyon GM, 3rd, Ramirez A, et al. Dapsone-induced hemolytic anemia in lung allograft recipients. J Heart Lung Transplant. 2008; 27: 1198– 1202. 26 Fung HT, Lai CH, Wong OF, Lam KK, Kam CW. Two cases of methemoglobinemia following zopiclone ingestion. Clin Toxicol (Phila). 2008; 46: 167– 170. 27 Turner MD, Karlis V, Glickman RS. The recognition, physiology, and treatment of medication-induced methemoglobinemia: a case report. Anesth Prog. 2007; 54: 115– 117. 28 Degowin RL, Eppes RB, Powell RD, Carson PE. The haemolytic effects of diaphenylsulfone (DDS) in normal subjects and in those with glucose-6-phosphate-dehydrogenase deficiency. Bull World Health Organ. 1966; 35: 165– 179. 29 Naranjo C, Busto U, Sellers E, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981; 30: 239– 245. 30 Kurian JR, Longlais BJ, Trepanier LA. Discovery and characterization of a cytochrome b5 variant with impaired hydroxylamine reduction capacity. Pharmacogenet Genom. 2006 19: 1366– 1373. 31 Williams S, MacDonald P, Hoyer J, Barr R, Atahle U. Methemoglobinemia in children with acute lymphobastic leukemia (ALL) receiving dapsone for Pneumocystis carinii prophylaxis: a correlation with cytochrome b5 reductase (Cb5R) enzyme levels. Pediatr Blood Cancer. 2004; 431– 438. 32 Fretland AJ, Leff MA, Doll MA, Hein DW. Functional characterization of human N-acetyltransferase 2 (NAT2) single nucleotide polymorphisms. Pharmacogenetics. 2001; 11: 207– 215. 33 Zang Y, Zhao S, Doll MA, States JC, Hein DW. The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics. 2004; 14: 717– 723. 34 Kita T, Tanigawara Y, Chikazawa S, et al. N-Acetyltransferase2 genotype correlated with isoniazid acetylation in Japanese tuberculous patients. Biol Pharm Bull. 2001; 24: 544– 549. 35 Chen M, Xia B, Chen B, et al. N-acetyltransferase 2 slow acetylator genotype associated with adverse effects of sulphasalazine in the treatment of inflammatory bowel disease. Can J Gastroenterol. 2007; 21: 155– 158. 36 Watanabe I, Tomita A, Shimizu M, et al. A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin Pharmacol Ther. 2003: 73: 435– 455. 37 Simon T, Becquemont L, Mary-Krause M, et al. Combined glutathione-S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin Pharmacol Ther. 2000; 67: 432– 437. 38 LaRocca D, Lehmann DF, Perl A, et al. The combination of nuclear and mitochondrial mutations as a risk factor for idiosyncratic toxicity. Br J Clin Pharmacol. 2007; 63: 249– 251. 39 Cribb AE, Miller M, Leeder JS, et al. Reactions of the nitroso and hydroxylamine metabolites of sulfamethoxazole with reduced glutathione. Implications for idiosyncratic toxicity. Drug Metab Dispos. 1991; 19: 900– 906. 40 Rothman N, Hayes RB, Bi W, et al. Correlation between N-acetyltransferase activity and NAT2 genotype in Chinese males. Pharmacogenetics. 1993; 3: 250– 255. 41 Holtzer C, Flaherty J, Coleman R. Cross-reactivity in HIV-infected patients switched from trimethoprim-sulfamethoxazole to dapsone. Pharmacotherapy. 1998; 18: 831– 835. 42 Hughes WT. Use of dapsone in the prevention and treatment of Pneumocystis carinii pneumonia: a review. Clin Infect Dis. 1998; 27: 191– 204. 43 Jorde U, Horowitz H, Wormser G. Utility of dapsone for prophylaxis of Pneumocystis carinii pneumonia in trimethoprim-sulfamethoxazole-intolerant, HIV-infected individuals. AIDS. 1993; 7: 355– 359. 44 Mandrell BN, McCormick JN. Dapsone-induced methemoglobinemia in pediatric oncology patients: case examples. J Pediatr Oncol Nurs. 2001; 18: 224– 228. Citing Literature Volume52, Issue2February 2012Pages 272-278 ReferencesRelatedInformation" @default.
- W2007161495 created "2016-06-24" @default.
- W2007161495 creator A5020114310 @default.
- W2007161495 creator A5034035357 @default.
- W2007161495 creator A5050711143 @default.
- W2007161495 creator A5062406240 @default.
- W2007161495 creator A5065290717 @default.
- W2007161495 creator A5082935469 @default.
- W2007161495 date "2012-02-01" @default.
- W2007161495 modified "2023-09-23" @default.
- W2007161495 title "Dapsone-Associated Methemoglobinemia in a Patient With SlowNAT2*5B Haplotype and Impaired Cytochromeb5Reductase Activity" @default.
- W2007161495 cites W1545460709 @default.
- W2007161495 cites W1765975574 @default.
- W2007161495 cites W1989632769 @default.
- W2007161495 cites W1994418319 @default.
- W2007161495 cites W1998260637 @default.
- W2007161495 cites W2000386923 @default.
- W2007161495 cites W2015114639 @default.
- W2007161495 cites W2015624438 @default.
- W2007161495 cites W2016218258 @default.
- W2007161495 cites W2020451846 @default.
- W2007161495 cites W2024227232 @default.
- W2007161495 cites W2028510515 @default.
- W2007161495 cites W2039770271 @default.
- W2007161495 cites W2043372194 @default.
- W2007161495 cites W2049443777 @default.
- W2007161495 cites W2051458429 @default.
- W2007161495 cites W2057809980 @default.
- W2007161495 cites W2057866669 @default.
- W2007161495 cites W2060444571 @default.
- W2007161495 cites W2067978628 @default.
- W2007161495 cites W2069127806 @default.
- W2007161495 cites W2081558811 @default.
- W2007161495 cites W2095649438 @default.
- W2007161495 cites W2101501414 @default.
- W2007161495 cites W2107746427 @default.
- W2007161495 cites W2111365552 @default.
- W2007161495 cites W2113436313 @default.
- W2007161495 cites W2118310203 @default.
- W2007161495 cites W2126653080 @default.
- W2007161495 cites W2134992319 @default.
- W2007161495 cites W2154208672 @default.
- W2007161495 cites W2167437946 @default.
- W2007161495 cites W2168420558 @default.
- W2007161495 cites W2170546016 @default.
- W2007161495 cites W57928570 @default.
- W2007161495 doi "https://doi.org/10.1177/0091270010393343" @default.
- W2007161495 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3153586" @default.
- W2007161495 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21422237" @default.
- W2007161495 hasPublicationYear "2012" @default.
- W2007161495 type Work @default.
- W2007161495 sameAs 2007161495 @default.
- W2007161495 citedByCount "6" @default.
- W2007161495 countsByYear W20071614952013 @default.
- W2007161495 countsByYear W20071614952016 @default.
- W2007161495 countsByYear W20071614952017 @default.
- W2007161495 countsByYear W20071614952020 @default.
- W2007161495 countsByYear W20071614952021 @default.
- W2007161495 crossrefType "journal-article" @default.
- W2007161495 hasAuthorship W2007161495A5020114310 @default.
- W2007161495 hasAuthorship W2007161495A5034035357 @default.
- W2007161495 hasAuthorship W2007161495A5050711143 @default.
- W2007161495 hasAuthorship W2007161495A5062406240 @default.
- W2007161495 hasAuthorship W2007161495A5065290717 @default.
- W2007161495 hasAuthorship W2007161495A5082935469 @default.
- W2007161495 hasBestOaLocation W20071614952 @default.
- W2007161495 hasConcept C104317684 @default.
- W2007161495 hasConcept C135763542 @default.
- W2007161495 hasConcept C16005928 @default.
- W2007161495 hasConcept C197754878 @default.
- W2007161495 hasConcept C2777640609 @default.
- W2007161495 hasConcept C2777737778 @default.
- W2007161495 hasConcept C42219234 @default.
- W2007161495 hasConcept C54355233 @default.
- W2007161495 hasConcept C71924100 @default.
- W2007161495 hasConcept C86803240 @default.
- W2007161495 hasConcept C98274493 @default.
- W2007161495 hasConceptScore W2007161495C104317684 @default.
- W2007161495 hasConceptScore W2007161495C135763542 @default.
- W2007161495 hasConceptScore W2007161495C16005928 @default.
- W2007161495 hasConceptScore W2007161495C197754878 @default.
- W2007161495 hasConceptScore W2007161495C2777640609 @default.
- W2007161495 hasConceptScore W2007161495C2777737778 @default.
- W2007161495 hasConceptScore W2007161495C42219234 @default.
- W2007161495 hasConceptScore W2007161495C54355233 @default.
- W2007161495 hasConceptScore W2007161495C71924100 @default.
- W2007161495 hasConceptScore W2007161495C86803240 @default.
- W2007161495 hasConceptScore W2007161495C98274493 @default.
- W2007161495 hasIssue "2" @default.
- W2007161495 hasLocation W20071614951 @default.
- W2007161495 hasLocation W20071614952 @default.
- W2007161495 hasLocation W20071614953 @default.
- W2007161495 hasLocation W20071614954 @default.
- W2007161495 hasOpenAccess W2007161495 @default.
- W2007161495 hasPrimaryLocation W20071614951 @default.
- W2007161495 hasRelatedWork W1606658862 @default.
- W2007161495 hasRelatedWork W1971109590 @default.
- W2007161495 hasRelatedWork W2017846262 @default.