Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007200746> ?p ?o ?g. }
- W2007200746 endingPage "711" @default.
- W2007200746 startingPage "696" @default.
- W2007200746 abstract "Abstract After analyzing the shortcomings of current feature extraction and fault diagnosis technologies, a new approach based on wavelet packet decomposition (WPD) and empirical mode decomposition (EMD) are combined to extract fault feature frequency and neural network for rotating machinery early fault diagnosis is proposed. Acquisition signals with fault frequency feature are decomposed into a series of narrow bandwidth using WPD method for de-noising, then, the intrinsic mode functions (IMFs), which usually denoted the features of corresponding frequency bandwidth can be obtained by applying EMD method. Thus, the component of IMF with signal feature can be separated from all IMFs and the energy moment of IMFs is proposed as eigenvector to effectively express the failure feature. The classical three layers BP neural network model taking the fault feature frequency as target input of neural network, the 5 spectral bandwidth energy of vibration signal spectrum as characteristic parameter, and the 10 types of representative rotor fault as output can be established to identify the fault pattern of a machine. Lastly, the fault identification model of rotating machinery with rotor lateral early crack based on BP neural network is taken as an example. The results show that the proposed method can effectively get the signal feature to diagnose the occurrence of early fault of rotating machinery." @default.
- W2007200746 created "2016-06-24" @default.
- W2007200746 creator A5049852063 @default.
- W2007200746 creator A5059254170 @default.
- W2007200746 creator A5079598722 @default.
- W2007200746 creator A5084001477 @default.
- W2007200746 date "2012-02-01" @default.
- W2007200746 modified "2023-10-14" @default.
- W2007200746 title "Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode decomposition feature extraction and neural network" @default.
- W2007200746 cites W1964239993 @default.
- W2007200746 cites W1971623470 @default.
- W2007200746 cites W1975514583 @default.
- W2007200746 cites W1976496664 @default.
- W2007200746 cites W1977020076 @default.
- W2007200746 cites W1992933503 @default.
- W2007200746 cites W2007221293 @default.
- W2007200746 cites W2021497603 @default.
- W2007200746 cites W2021909145 @default.
- W2007200746 cites W2024735092 @default.
- W2007200746 cites W2032720931 @default.
- W2007200746 cites W2035960432 @default.
- W2007200746 cites W2040070030 @default.
- W2007200746 cites W2042794692 @default.
- W2007200746 cites W2046743657 @default.
- W2007200746 cites W2047244261 @default.
- W2007200746 cites W2047539961 @default.
- W2007200746 cites W2066188767 @default.
- W2007200746 cites W2088911219 @default.
- W2007200746 cites W2132265582 @default.
- W2007200746 cites W2144179435 @default.
- W2007200746 cites W2149854044 @default.
- W2007200746 doi "https://doi.org/10.1016/j.ymssp.2011.08.002" @default.
- W2007200746 hasPublicationYear "2012" @default.
- W2007200746 type Work @default.
- W2007200746 sameAs 2007200746 @default.
- W2007200746 citedByCount "405" @default.
- W2007200746 countsByYear W20072007462012 @default.
- W2007200746 countsByYear W20072007462013 @default.
- W2007200746 countsByYear W20072007462014 @default.
- W2007200746 countsByYear W20072007462015 @default.
- W2007200746 countsByYear W20072007462016 @default.
- W2007200746 countsByYear W20072007462017 @default.
- W2007200746 countsByYear W20072007462018 @default.
- W2007200746 countsByYear W20072007462019 @default.
- W2007200746 countsByYear W20072007462020 @default.
- W2007200746 countsByYear W20072007462021 @default.
- W2007200746 countsByYear W20072007462022 @default.
- W2007200746 countsByYear W20072007462023 @default.
- W2007200746 crossrefType "journal-article" @default.
- W2007200746 hasAuthorship W2007200746A5049852063 @default.
- W2007200746 hasAuthorship W2007200746A5059254170 @default.
- W2007200746 hasAuthorship W2007200746A5079598722 @default.
- W2007200746 hasAuthorship W2007200746A5084001477 @default.
- W2007200746 hasConcept C106131492 @default.
- W2007200746 hasConcept C111919701 @default.
- W2007200746 hasConcept C127313418 @default.
- W2007200746 hasConcept C127413603 @default.
- W2007200746 hasConcept C153180895 @default.
- W2007200746 hasConcept C154945302 @default.
- W2007200746 hasConcept C155777637 @default.
- W2007200746 hasConcept C158379750 @default.
- W2007200746 hasConcept C165205528 @default.
- W2007200746 hasConcept C175551986 @default.
- W2007200746 hasConcept C185592680 @default.
- W2007200746 hasConcept C196216189 @default.
- W2007200746 hasConcept C25570617 @default.
- W2007200746 hasConcept C28490314 @default.
- W2007200746 hasConcept C31258907 @default.
- W2007200746 hasConcept C31972630 @default.
- W2007200746 hasConcept C41008148 @default.
- W2007200746 hasConcept C43617362 @default.
- W2007200746 hasConcept C4725764 @default.
- W2007200746 hasConcept C47432892 @default.
- W2007200746 hasConcept C48677424 @default.
- W2007200746 hasConcept C50644808 @default.
- W2007200746 hasConcept C52622490 @default.
- W2007200746 hasConceptScore W2007200746C106131492 @default.
- W2007200746 hasConceptScore W2007200746C111919701 @default.
- W2007200746 hasConceptScore W2007200746C127313418 @default.
- W2007200746 hasConceptScore W2007200746C127413603 @default.
- W2007200746 hasConceptScore W2007200746C153180895 @default.
- W2007200746 hasConceptScore W2007200746C154945302 @default.
- W2007200746 hasConceptScore W2007200746C155777637 @default.
- W2007200746 hasConceptScore W2007200746C158379750 @default.
- W2007200746 hasConceptScore W2007200746C165205528 @default.
- W2007200746 hasConceptScore W2007200746C175551986 @default.
- W2007200746 hasConceptScore W2007200746C185592680 @default.
- W2007200746 hasConceptScore W2007200746C196216189 @default.
- W2007200746 hasConceptScore W2007200746C25570617 @default.
- W2007200746 hasConceptScore W2007200746C28490314 @default.
- W2007200746 hasConceptScore W2007200746C31258907 @default.
- W2007200746 hasConceptScore W2007200746C31972630 @default.
- W2007200746 hasConceptScore W2007200746C41008148 @default.
- W2007200746 hasConceptScore W2007200746C43617362 @default.
- W2007200746 hasConceptScore W2007200746C4725764 @default.
- W2007200746 hasConceptScore W2007200746C47432892 @default.
- W2007200746 hasConceptScore W2007200746C48677424 @default.
- W2007200746 hasConceptScore W2007200746C50644808 @default.