Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007236156> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2007236156 abstract "In this paper, we consider the problem of learning a two dimensional spatial model of a gas distribution with a mobile robot. Building maps that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We present an approach that formulates this task as a regression problem. To deal with the specific properties of typical gas distributions, we propose a sparse Gaussian process mixture model. This allows us to accurately represent the smooth background signal as well as areas of high concentration. We integrate the sparsification of the training data into an EM procedure used for learning the mixture components and the gating function. Our approach has been implemented and tested using datasets recorded with a real mobile robot equipped with an electronic nose. We demonstrate that our models are well suited for predicting gas concentrations at new query locations and that they outperform alternative methods used in robotics to carry out in this task." @default.
- W2007236156 created "2016-06-24" @default.
- W2007236156 creator A5011166267 @default.
- W2007236156 creator A5014279140 @default.
- W2007236156 creator A5084071835 @default.
- W2007236156 creator A5084499878 @default.
- W2007236156 date "2008-06-25" @default.
- W2007236156 modified "2023-10-18" @default.
- W2007236156 title "Gas Distribution Modeling using Sparse Gaussian Process Mixture Models" @default.
- W2007236156 cites W128220644 @default.
- W2007236156 cites W1569654252 @default.
- W2007236156 cites W1603491012 @default.
- W2007236156 cites W1746819321 @default.
- W2007236156 cites W1790231888 @default.
- W2007236156 cites W1992713863 @default.
- W2007236156 cites W2069168969 @default.
- W2007236156 cites W2098949458 @default.
- W2007236156 cites W2111683289 @default.
- W2007236156 cites W2117778675 @default.
- W2007236156 cites W2123687908 @default.
- W2007236156 cites W2130031702 @default.
- W2007236156 cites W2133102514 @default.
- W2007236156 cites W2136801679 @default.
- W2007236156 cites W2138364548 @default.
- W2007236156 cites W2139022569 @default.
- W2007236156 cites W2167387227 @default.
- W2007236156 cites W2973349867 @default.
- W2007236156 doi "https://doi.org/10.15607/rss.2008.iv.040" @default.
- W2007236156 hasPublicationYear "2008" @default.
- W2007236156 type Work @default.
- W2007236156 sameAs 2007236156 @default.
- W2007236156 citedByCount "25" @default.
- W2007236156 countsByYear W20072361562012 @default.
- W2007236156 countsByYear W20072361562013 @default.
- W2007236156 countsByYear W20072361562014 @default.
- W2007236156 countsByYear W20072361562015 @default.
- W2007236156 countsByYear W20072361562016 @default.
- W2007236156 countsByYear W20072361562017 @default.
- W2007236156 countsByYear W20072361562018 @default.
- W2007236156 countsByYear W20072361562019 @default.
- W2007236156 countsByYear W20072361562020 @default.
- W2007236156 countsByYear W20072361562021 @default.
- W2007236156 countsByYear W20072361562022 @default.
- W2007236156 crossrefType "proceedings-article" @default.
- W2007236156 hasAuthorship W2007236156A5011166267 @default.
- W2007236156 hasAuthorship W2007236156A5014279140 @default.
- W2007236156 hasAuthorship W2007236156A5084071835 @default.
- W2007236156 hasAuthorship W2007236156A5084499878 @default.
- W2007236156 hasBestOaLocation W20072361561 @default.
- W2007236156 hasConcept C110121322 @default.
- W2007236156 hasConcept C111919701 @default.
- W2007236156 hasConcept C121332964 @default.
- W2007236156 hasConcept C134306372 @default.
- W2007236156 hasConcept C154945302 @default.
- W2007236156 hasConcept C163716315 @default.
- W2007236156 hasConcept C33923547 @default.
- W2007236156 hasConcept C41008148 @default.
- W2007236156 hasConcept C61224824 @default.
- W2007236156 hasConcept C61326573 @default.
- W2007236156 hasConcept C62520636 @default.
- W2007236156 hasConcept C98045186 @default.
- W2007236156 hasConceptScore W2007236156C110121322 @default.
- W2007236156 hasConceptScore W2007236156C111919701 @default.
- W2007236156 hasConceptScore W2007236156C121332964 @default.
- W2007236156 hasConceptScore W2007236156C134306372 @default.
- W2007236156 hasConceptScore W2007236156C154945302 @default.
- W2007236156 hasConceptScore W2007236156C163716315 @default.
- W2007236156 hasConceptScore W2007236156C33923547 @default.
- W2007236156 hasConceptScore W2007236156C41008148 @default.
- W2007236156 hasConceptScore W2007236156C61224824 @default.
- W2007236156 hasConceptScore W2007236156C61326573 @default.
- W2007236156 hasConceptScore W2007236156C62520636 @default.
- W2007236156 hasConceptScore W2007236156C98045186 @default.
- W2007236156 hasLocation W20072361561 @default.
- W2007236156 hasLocation W20072361562 @default.
- W2007236156 hasLocation W20072361563 @default.
- W2007236156 hasOpenAccess W2007236156 @default.
- W2007236156 hasPrimaryLocation W20072361561 @default.
- W2007236156 hasRelatedWork W2053455835 @default.
- W2007236156 hasRelatedWork W2055782493 @default.
- W2007236156 hasRelatedWork W2792612132 @default.
- W2007236156 hasRelatedWork W2891787551 @default.
- W2007236156 hasRelatedWork W2897453949 @default.
- W2007236156 hasRelatedWork W3049674332 @default.
- W2007236156 hasRelatedWork W3162483426 @default.
- W2007236156 hasRelatedWork W4205826960 @default.
- W2007236156 hasRelatedWork W4238439451 @default.
- W2007236156 hasRelatedWork W4324355716 @default.
- W2007236156 isParatext "false" @default.
- W2007236156 isRetracted "false" @default.
- W2007236156 magId "2007236156" @default.
- W2007236156 workType "article" @default.