Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007277472> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2007277472 endingPage "2914" @default.
- W2007277472 startingPage "2906" @default.
- W2007277472 abstract "X-ray images of distant stars and galaxies are typically registered by low photon counts at the pixel level, for which the Poisson distribution is a sensible model description. The resulting count data can be represented in a multi-scale framework, where the likelihood function factorizes in functions of relative intensity parameters corresponding to different levels from the whole frame down to the pixel level. In a Bayesian approach, a prior is assigned on these relative intensity parameters independently across levels and the image is reconstructed using the posterior mean of intensity parameter of each pixel. A novel prior which allows ties in the values of relative intensity parameters of neighboring regions has been recently shown to be very successful in finding structures in images. We extend this idea to reconstruct colored images from noisy data. The proposed method is completely data-driven, since all smoothing parameters are automatically estimated from the data without any additional user input. In the context of astronomical X-ray images, color represents the energy level of photons, which are also typically recorded by telescopes. The energy level can be considered as the third dimension of images. In a more general sense, the technique we develop applies to all three dimensional images, and can be used to process medical images as well." @default.
- W2007277472 created "2016-06-24" @default.
- W2007277472 creator A5011476402 @default.
- W2007277472 creator A5036419478 @default.
- W2007277472 date "2013-11-01" @default.
- W2007277472 modified "2023-10-18" @default.
- W2007277472 title "Denoising three-dimensional and colored images using a Bayesian multi-scale model for photon counts" @default.
- W2007277472 cites W1663272054 @default.
- W2007277472 cites W2053218206 @default.
- W2007277472 cites W2060637162 @default.
- W2007277472 cites W2062137137 @default.
- W2007277472 cites W2133956764 @default.
- W2007277472 cites W2134929491 @default.
- W2007277472 cites W2140377889 @default.
- W2007277472 cites W2158717601 @default.
- W2007277472 cites W3098824294 @default.
- W2007277472 cites W59771946 @default.
- W2007277472 doi "https://doi.org/10.1016/j.sigpro.2013.04.003" @default.
- W2007277472 hasPublicationYear "2013" @default.
- W2007277472 type Work @default.
- W2007277472 sameAs 2007277472 @default.
- W2007277472 citedByCount "4" @default.
- W2007277472 countsByYear W20072774722014 @default.
- W2007277472 countsByYear W20072774722015 @default.
- W2007277472 crossrefType "journal-article" @default.
- W2007277472 hasAuthorship W2007277472A5011476402 @default.
- W2007277472 hasAuthorship W2007277472A5036419478 @default.
- W2007277472 hasConcept C100906024 @default.
- W2007277472 hasConcept C105795698 @default.
- W2007277472 hasConcept C107673813 @default.
- W2007277472 hasConcept C121332964 @default.
- W2007277472 hasConcept C151730666 @default.
- W2007277472 hasConcept C153180895 @default.
- W2007277472 hasConcept C154945302 @default.
- W2007277472 hasConcept C160633673 @default.
- W2007277472 hasConcept C2779343474 @default.
- W2007277472 hasConcept C31972630 @default.
- W2007277472 hasConcept C33923547 @default.
- W2007277472 hasConcept C3770464 @default.
- W2007277472 hasConcept C41008148 @default.
- W2007277472 hasConcept C86803240 @default.
- W2007277472 hasConceptScore W2007277472C100906024 @default.
- W2007277472 hasConceptScore W2007277472C105795698 @default.
- W2007277472 hasConceptScore W2007277472C107673813 @default.
- W2007277472 hasConceptScore W2007277472C121332964 @default.
- W2007277472 hasConceptScore W2007277472C151730666 @default.
- W2007277472 hasConceptScore W2007277472C153180895 @default.
- W2007277472 hasConceptScore W2007277472C154945302 @default.
- W2007277472 hasConceptScore W2007277472C160633673 @default.
- W2007277472 hasConceptScore W2007277472C2779343474 @default.
- W2007277472 hasConceptScore W2007277472C31972630 @default.
- W2007277472 hasConceptScore W2007277472C33923547 @default.
- W2007277472 hasConceptScore W2007277472C3770464 @default.
- W2007277472 hasConceptScore W2007277472C41008148 @default.
- W2007277472 hasConceptScore W2007277472C86803240 @default.
- W2007277472 hasIssue "11" @default.
- W2007277472 hasLocation W20072774721 @default.
- W2007277472 hasOpenAccess W2007277472 @default.
- W2007277472 hasPrimaryLocation W20072774721 @default.
- W2007277472 hasRelatedWork W121273120 @default.
- W2007277472 hasRelatedWork W2002009170 @default.
- W2007277472 hasRelatedWork W2034462085 @default.
- W2007277472 hasRelatedWork W2136485282 @default.
- W2007277472 hasRelatedWork W2141888456 @default.
- W2007277472 hasRelatedWork W2337415362 @default.
- W2007277472 hasRelatedWork W2546871836 @default.
- W2007277472 hasRelatedWork W2740820121 @default.
- W2007277472 hasRelatedWork W317572212 @default.
- W2007277472 hasRelatedWork W4312857205 @default.
- W2007277472 hasVolume "93" @default.
- W2007277472 isParatext "false" @default.
- W2007277472 isRetracted "false" @default.
- W2007277472 magId "2007277472" @default.
- W2007277472 workType "article" @default.