Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007281715> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2007281715 endingPage "380" @default.
- W2007281715 startingPage "370" @default.
- W2007281715 abstract "Abstract Equations for three-phase, three-dimensional, compressible flow (including capillarity) are reduced to two-dimensional relations by a partial integration. This reduction allows three-dimensional flow problems to be treated with mathematics for only two spatial dimensions. The results can be used to formulate flow equations for two-dimensional reservoir simulators i-n which the effects of capillarity and fluid segregation in the third dimension are represented. Such reservoir simulators would retain many of the advantages of two-dimensional simulators while simulating three-dimensional effects. The principal restriction of the method is that the thickness of the reservoir should be small, compared to the distance across the reservoir. Introduction In recent years, computers have been used to calculate performances of many reservoirs. Most of the detailed calculations, however, are based on finite difference solutions of the flow equations, and present day computers are seldom able to handle a sufficient number of cells to produce entirely satisfactory solutions, even for produce entirely satisfactory solutions, even for reservoirs represented by two-dimensional arrays of cells. The simulation becomes much worse when one wishes to approximate the reservoir by a three-dimensional array. A great saving in computation or a more detailed solution can be obtained for many reservoirs by using the partial integration of the equations of flow, presented in this paper. The integration reduces the three-dimensional equations to two-dimensional relations; ant for studies of two-dimensional flows in vertical cross-sections, the equations are reduced to one-dimensional relations. Most reservoir performance calculations currently are based on one- or two-dimensional flow relations. In some cases flow in the third dimension is approximated by assuming a particular type of vertical saturation distribution, such as gravity segregation. The relations developed in this paper approach those for segregated flow as the capillary pressures approach zero, and they approach those for uniformly distributed saturations as the capillary pressures are increased. For this analysis, the ratio of the reservoir's thickness to the maximum distance across it must be small. The capillary pressures between the oil and water should also be small compared to the maximum pressure difference in the reservoirs. It is requirement is met by most reservoirs. It is assumed that the capillary-pressure curves are well defined, whether or not hysteresis effects are included. Also, the reservoir must have sufficient vertical permeability to allow the fluids to segregate. The results presented here provide a firm theoretical foundation to Coats' et al. assumption of vertical equilibrium and extend the relations to three-phase flow. Coats' assumption of vertical equilibrium, which he verified by calculations and experiment, is developed here mathematically from basic flow equations. Discussion SATURATION AND PRESSURE DISTRIBUTIONS Appendix A presents a mathematical analysis of fluid flow in reservoirs where the ratio of thickness to maximum distance across the reservoir is small. The results indicate:that the fluids along any line perpendicular to such a reservoir's upper surface are in antic capillary equilibrium (vertical equilibrium);that, to a first approximation, the fluid pressures and properties are functions of only areal position in the reservoir and time; andthat hydrostatic pressure gradients exist along any line perpendicular to the reservoir's upper surface. The results might be expected after studying several physical considerations. First, no flow is allowed normal to the upper and lower reservoir boundaries, which are relatively close together. SPEJ P. 370" @default.
- W2007281715 created "2016-06-24" @default.
- W2007281715 creator A5003281170 @default.
- W2007281715 date "1968-12-01" @default.
- W2007281715 modified "2023-10-01" @default.
- W2007281715 title "Partial Integration of Equations of Multiphase Flow" @default.
- W2007281715 doi "https://doi.org/10.2118/2040-pa" @default.
- W2007281715 hasPublicationYear "1968" @default.
- W2007281715 type Work @default.
- W2007281715 sameAs 2007281715 @default.
- W2007281715 citedByCount "30" @default.
- W2007281715 countsByYear W20072817152014 @default.
- W2007281715 countsByYear W20072817152015 @default.
- W2007281715 countsByYear W20072817152016 @default.
- W2007281715 countsByYear W20072817152017 @default.
- W2007281715 countsByYear W20072817152018 @default.
- W2007281715 countsByYear W20072817152020 @default.
- W2007281715 crossrefType "journal-article" @default.
- W2007281715 hasAuthorship W2007281715A5003281170 @default.
- W2007281715 hasBestOaLocation W20072817151 @default.
- W2007281715 hasConcept C11413529 @default.
- W2007281715 hasConcept C121332964 @default.
- W2007281715 hasConcept C127313418 @default.
- W2007281715 hasConcept C134306372 @default.
- W2007281715 hasConcept C151730666 @default.
- W2007281715 hasConcept C183250156 @default.
- W2007281715 hasConcept C202444582 @default.
- W2007281715 hasConcept C2524010 @default.
- W2007281715 hasConcept C2778668878 @default.
- W2007281715 hasConcept C2779379648 @default.
- W2007281715 hasConcept C28826006 @default.
- W2007281715 hasConcept C33676613 @default.
- W2007281715 hasConcept C33923547 @default.
- W2007281715 hasConcept C38349280 @default.
- W2007281715 hasConcept C38409319 @default.
- W2007281715 hasConcept C41008148 @default.
- W2007281715 hasConcept C45374587 @default.
- W2007281715 hasConcept C5192115 @default.
- W2007281715 hasConcept C548895740 @default.
- W2007281715 hasConcept C57879066 @default.
- W2007281715 hasConcept C78762247 @default.
- W2007281715 hasConcept C84655787 @default.
- W2007281715 hasConcept C90278072 @default.
- W2007281715 hasConcept C93779851 @default.
- W2007281715 hasConceptScore W2007281715C11413529 @default.
- W2007281715 hasConceptScore W2007281715C121332964 @default.
- W2007281715 hasConceptScore W2007281715C127313418 @default.
- W2007281715 hasConceptScore W2007281715C134306372 @default.
- W2007281715 hasConceptScore W2007281715C151730666 @default.
- W2007281715 hasConceptScore W2007281715C183250156 @default.
- W2007281715 hasConceptScore W2007281715C202444582 @default.
- W2007281715 hasConceptScore W2007281715C2524010 @default.
- W2007281715 hasConceptScore W2007281715C2778668878 @default.
- W2007281715 hasConceptScore W2007281715C2779379648 @default.
- W2007281715 hasConceptScore W2007281715C28826006 @default.
- W2007281715 hasConceptScore W2007281715C33676613 @default.
- W2007281715 hasConceptScore W2007281715C33923547 @default.
- W2007281715 hasConceptScore W2007281715C38349280 @default.
- W2007281715 hasConceptScore W2007281715C38409319 @default.
- W2007281715 hasConceptScore W2007281715C41008148 @default.
- W2007281715 hasConceptScore W2007281715C45374587 @default.
- W2007281715 hasConceptScore W2007281715C5192115 @default.
- W2007281715 hasConceptScore W2007281715C548895740 @default.
- W2007281715 hasConceptScore W2007281715C57879066 @default.
- W2007281715 hasConceptScore W2007281715C78762247 @default.
- W2007281715 hasConceptScore W2007281715C84655787 @default.
- W2007281715 hasConceptScore W2007281715C90278072 @default.
- W2007281715 hasConceptScore W2007281715C93779851 @default.
- W2007281715 hasIssue "04" @default.
- W2007281715 hasLocation W20072817151 @default.
- W2007281715 hasOpenAccess W2007281715 @default.
- W2007281715 hasPrimaryLocation W20072817151 @default.
- W2007281715 hasRelatedWork W1602963376 @default.
- W2007281715 hasRelatedWork W1997952300 @default.
- W2007281715 hasRelatedWork W2007281715 @default.
- W2007281715 hasRelatedWork W2026799202 @default.
- W2007281715 hasRelatedWork W2300574678 @default.
- W2007281715 hasRelatedWork W2414603990 @default.
- W2007281715 hasRelatedWork W257061854 @default.
- W2007281715 hasRelatedWork W2648017064 @default.
- W2007281715 hasRelatedWork W67798872 @default.
- W2007281715 hasRelatedWork W2735407639 @default.
- W2007281715 hasVolume "8" @default.
- W2007281715 isParatext "false" @default.
- W2007281715 isRetracted "false" @default.
- W2007281715 magId "2007281715" @default.
- W2007281715 workType "article" @default.