Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007309912> ?p ?o ?g. }
- W2007309912 endingPage "258" @default.
- W2007309912 startingPage "238" @default.
- W2007309912 abstract "Abstract Young gullies and gully deposits on walls of martian craters have been cited as evidence that liquid water flowed on the surface of Mars relatively recently. Effects of variable environmental conditions at the surface of Mars are modeled and applied to the case of groundwater emergence from shallow aquifers to investigate whether groundwater is a viable source to enable the erosion of these gullies. The model includes detailed treatment of ice growth in the aquifer. Model results indicate that groundwater discharge can be maintained under the current environmental conditions if the aquifer permeability is like that of terrestrial gravel or higher, if the aquifer is 350 K or warmer, or if the aquifer is a brine with a freezing point depressed to 250 K or below. Groundwater discharge cannot be maintained for the conservative case of a cold, pure water, semi-pervious aquifer. Cold (275 K) pure water pervious (gravel) aquifers, warm (350 K) pure water semi-pervious aquifers, and cold (275 K) CaCl2 brine semi-pervious aquifers all exhibit a dependence of discharge on season, latitude and slope orientation in our modeling. Seasonal, latitudinal and azimuthal discharge variations are strongest for cold CaCl2 brine semi-pervious aquifers, with discharges from this aquifer type favoring equator-facing slopes at mid and high southern latitudes. At all latitudes and slope azimuths under our nominal conditions, the cold pure water pervious aquifer, the cold pure water semi-pervious aquifer and the cold CaCl2 brine semi-pervious aquifer all freeze completely shortly after the simulations are started. Discharge restarts in the summer for the cold pure water pervious aquifer and the cold brine aquifer, but discharge does not restart for the cold pure water semi-pervious aquifer. The warm pure water semi-pervious aquifer maintains daily seeps throughout the year at all but high latitudes. In the case of the cold pure water pervious aquifer, approximately 500,000 m3 of water could be discharged from a mid-latitude, 150-m thick aquifer with a 20-m wide seepage face orientated towards the equator or the pole after a single undermining-induced event before ice growth seals the seepage face. For a brine semi-pervious aquifer with the same dimensions, 200–300 m3 of water could be released from a mid-latitude 20-m wide equator-facing seepage face before the fresh exposure is sealed for the fall and winter seasons. Our results do not rule out groundwater emergence as a means of creating some recent gullies, but they indicate that rather special and perhaps unusual conditions would be required." @default.
- W2007309912 created "2016-06-24" @default.
- W2007309912 creator A5041378159 @default.
- W2007309912 creator A5041659140 @default.
- W2007309912 date "2011-01-01" @default.
- W2007309912 modified "2023-09-26" @default.
- W2007309912 title "Groundwater discharge and gully formation on martian slopes" @default.
- W2007309912 cites W1495520788 @default.
- W2007309912 cites W1517691574 @default.
- W2007309912 cites W1586826975 @default.
- W2007309912 cites W1644570165 @default.
- W2007309912 cites W1963764496 @default.
- W2007309912 cites W1967591530 @default.
- W2007309912 cites W1969322422 @default.
- W2007309912 cites W1974050201 @default.
- W2007309912 cites W1975801642 @default.
- W2007309912 cites W1978489636 @default.
- W2007309912 cites W1983079246 @default.
- W2007309912 cites W1983110153 @default.
- W2007309912 cites W1995876066 @default.
- W2007309912 cites W1996653003 @default.
- W2007309912 cites W1998480169 @default.
- W2007309912 cites W1999303421 @default.
- W2007309912 cites W2003148180 @default.
- W2007309912 cites W2005079578 @default.
- W2007309912 cites W2010550174 @default.
- W2007309912 cites W2014080719 @default.
- W2007309912 cites W2016644245 @default.
- W2007309912 cites W2017715613 @default.
- W2007309912 cites W2018152029 @default.
- W2007309912 cites W2019196035 @default.
- W2007309912 cites W2022603827 @default.
- W2007309912 cites W2025698098 @default.
- W2007309912 cites W2036021937 @default.
- W2007309912 cites W2037372977 @default.
- W2007309912 cites W2037903122 @default.
- W2007309912 cites W2040190591 @default.
- W2007309912 cites W2041807499 @default.
- W2007309912 cites W2049135790 @default.
- W2007309912 cites W2050276339 @default.
- W2007309912 cites W2050756326 @default.
- W2007309912 cites W2052523947 @default.
- W2007309912 cites W2055083762 @default.
- W2007309912 cites W2062209528 @default.
- W2007309912 cites W2063436465 @default.
- W2007309912 cites W2065423110 @default.
- W2007309912 cites W2068405272 @default.
- W2007309912 cites W2074277910 @default.
- W2007309912 cites W2076509405 @default.
- W2007309912 cites W2083795557 @default.
- W2007309912 cites W2084478010 @default.
- W2007309912 cites W2085819344 @default.
- W2007309912 cites W2090194439 @default.
- W2007309912 cites W2094700404 @default.
- W2007309912 cites W2103431830 @default.
- W2007309912 cites W2103616306 @default.
- W2007309912 cites W2105924554 @default.
- W2007309912 cites W2112953462 @default.
- W2007309912 cites W2121006557 @default.
- W2007309912 cites W2135428958 @default.
- W2007309912 cites W2141591749 @default.
- W2007309912 cites W2157561095 @default.
- W2007309912 cites W2170615758 @default.
- W2007309912 cites W2171794705 @default.
- W2007309912 cites W2173488922 @default.
- W2007309912 doi "https://doi.org/10.1016/j.icarus.2010.10.008" @default.
- W2007309912 hasPublicationYear "2011" @default.
- W2007309912 type Work @default.
- W2007309912 sameAs 2007309912 @default.
- W2007309912 citedByCount "30" @default.
- W2007309912 countsByYear W20073099122012 @default.
- W2007309912 countsByYear W20073099122013 @default.
- W2007309912 countsByYear W20073099122014 @default.
- W2007309912 countsByYear W20073099122015 @default.
- W2007309912 countsByYear W20073099122016 @default.
- W2007309912 countsByYear W20073099122017 @default.
- W2007309912 countsByYear W20073099122018 @default.
- W2007309912 countsByYear W20073099122019 @default.
- W2007309912 countsByYear W20073099122020 @default.
- W2007309912 countsByYear W20073099122021 @default.
- W2007309912 countsByYear W20073099122022 @default.
- W2007309912 countsByYear W20073099122023 @default.
- W2007309912 crossrefType "journal-article" @default.
- W2007309912 hasAuthorship W2007309912A5041378159 @default.
- W2007309912 hasAuthorship W2007309912A5041659140 @default.
- W2007309912 hasConcept C121332964 @default.
- W2007309912 hasConcept C127313418 @default.
- W2007309912 hasConcept C187320778 @default.
- W2007309912 hasConcept C2778600265 @default.
- W2007309912 hasConcept C39432304 @default.
- W2007309912 hasConcept C41642174 @default.
- W2007309912 hasConcept C76177295 @default.
- W2007309912 hasConcept C76886044 @default.
- W2007309912 hasConcept C83260615 @default.
- W2007309912 hasConcept C87355193 @default.
- W2007309912 hasConceptScore W2007309912C121332964 @default.
- W2007309912 hasConceptScore W2007309912C127313418 @default.
- W2007309912 hasConceptScore W2007309912C187320778 @default.