Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007320304> ?p ?o ?g. }
- W2007320304 endingPage "1269" @default.
- W2007320304 startingPage "1259" @default.
- W2007320304 abstract "In aqueous solution, the basis of all living processes, hydrogen bonding exerts a powerful effect on chemical reactivity. The vibrational energy relaxation (VER) process in hydrogen-bonded complexes in solution is sensitive to the microscopic environment around the oscillator and to the geometrical configuration of the hydrogen-bonded complexes. In this Account, we describe the use of time-resolved infrared (IR) pump-probe spectroscopy to study the vibrational dynamics of (i) the carbonyl CO stretching modes in protic solvents and (ii) the OH stretching modes of phenol and carboxylic acid. In these cases, the carbonyl group acts as a hydrogen-bond acceptor, whereas the hydroxyl group acts as a hydrogen-bond donor. These vibrational modes have different properties depending on their respective chemical bonds, suggesting that hydrogen bonding may have different mechanisms and effects on the VER of the CO and OH modes than previously understood. The IR pump-probe signals of the CO stretching mode of 9-fluorenone and methyl acetate in alcohol, as well as that of acetic acid in water, include several components with different time constants. Quantum chemical calculations indicate that the dynamical components are the result of various hydrogen-bonded complexes that form between solute and solvent molecules. The acceleration of the VER is due to the increasing vibrational density of states caused by the formation of hydrogen bonds. The vibrational dynamics of the OH stretching mode in hydrogen-bonded complexes were studied in several systems. For phenol-base complexes, the decay time constant of the pump-probe signal decreases as the band peak of the IR absorption spectrum shifts to lower wavenumbers (the result of changing the proton acceptor). For phenol oligomers, the decay time constant of the pump-probe signal decreases as the probe wavenumber decreases. These observations show that the VER time strongly correlates with the strength of hydrogen bonding. This acceleration may be due to increased coupling between the OH stretching mode and the accepting mode of the VER, because the low-frequency shift caused by hydrogen bond formation is very large. Unlike phenol oligomers, however, the pump-probe signals of phenol-base complexes did not exhibit probe frequency dependence. For these complexes, rapid interconversion between different conformations causes rapid fluctuations in the vibrational frequency of the OH stretching modes, and these fluctuations level the VER times of different conformations. For the benzoic acid dimer, a quantum beat at a frequency of around 100 cm(-1) is superimposed on the pump-probe signal. This result indicates the presence of strong anharmonic coupling between the intramolecular OH stretching and the intermolecular stretching modes. From a two-dimensional plot of the OH stretching wavenumber and the low-frequency wavenumber, the wavenumber of the low-frequency mode is found to increase monotonically as the probe wavenumber is shifted toward lower wavenumbers. Our results represent a quantitative determination of the acceleration of VER by the formation of hydrogen bonds. Our studies merit further evaluation and raise fundamental questions about the current theory of vibrational dynamics in the condensed phase." @default.
- W2007320304 created "2016-06-24" @default.
- W2007320304 creator A5015059672 @default.
- W2007320304 creator A5030904862 @default.
- W2007320304 creator A5034929812 @default.
- W2007320304 creator A5039224202 @default.
- W2007320304 creator A5056703680 @default.
- W2007320304 date "2009-07-02" @default.
- W2007320304 modified "2023-09-24" @default.
- W2007320304 title "Vibrational Dynamics of Hydrogen-Bonded Complexes in Solutions Studied with Ultrafast Infrared Pump−Probe Spectroscopy" @default.
- W2007320304 cites W1964122656 @default.
- W2007320304 cites W1971407816 @default.
- W2007320304 cites W1977950417 @default.
- W2007320304 cites W1981418282 @default.
- W2007320304 cites W1988326096 @default.
- W2007320304 cites W1991951085 @default.
- W2007320304 cites W1999857770 @default.
- W2007320304 cites W2004980771 @default.
- W2007320304 cites W2010499880 @default.
- W2007320304 cites W2017766169 @default.
- W2007320304 cites W2019066123 @default.
- W2007320304 cites W2019538397 @default.
- W2007320304 cites W2019944252 @default.
- W2007320304 cites W2023053975 @default.
- W2007320304 cites W2025140439 @default.
- W2007320304 cites W2038626371 @default.
- W2007320304 cites W2040175184 @default.
- W2007320304 cites W2040883158 @default.
- W2007320304 cites W2047147773 @default.
- W2007320304 cites W2051209845 @default.
- W2007320304 cites W2051698784 @default.
- W2007320304 cites W2052409141 @default.
- W2007320304 cites W2053990599 @default.
- W2007320304 cites W2064812046 @default.
- W2007320304 cites W2069805585 @default.
- W2007320304 cites W2069842001 @default.
- W2007320304 cites W2076244804 @default.
- W2007320304 cites W2076864810 @default.
- W2007320304 cites W2078097198 @default.
- W2007320304 cites W2080987910 @default.
- W2007320304 cites W2084582300 @default.
- W2007320304 cites W2087322664 @default.
- W2007320304 cites W2097895571 @default.
- W2007320304 cites W2114577816 @default.
- W2007320304 cites W2121908928 @default.
- W2007320304 cites W2125188783 @default.
- W2007320304 cites W2142134432 @default.
- W2007320304 cites W2150565647 @default.
- W2007320304 cites W2150603940 @default.
- W2007320304 cites W3205770796 @default.
- W2007320304 cites W4244914404 @default.
- W2007320304 cites W4256172841 @default.
- W2007320304 cites W643358076 @default.
- W2007320304 doi "https://doi.org/10.1021/ar9000229" @default.
- W2007320304 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19754112" @default.
- W2007320304 hasPublicationYear "2009" @default.
- W2007320304 type Work @default.
- W2007320304 sameAs 2007320304 @default.
- W2007320304 citedByCount "64" @default.
- W2007320304 countsByYear W20073203042012 @default.
- W2007320304 countsByYear W20073203042013 @default.
- W2007320304 countsByYear W20073203042014 @default.
- W2007320304 countsByYear W20073203042015 @default.
- W2007320304 countsByYear W20073203042016 @default.
- W2007320304 countsByYear W20073203042017 @default.
- W2007320304 countsByYear W20073203042018 @default.
- W2007320304 countsByYear W20073203042019 @default.
- W2007320304 countsByYear W20073203042020 @default.
- W2007320304 countsByYear W20073203042021 @default.
- W2007320304 countsByYear W20073203042022 @default.
- W2007320304 countsByYear W20073203042023 @default.
- W2007320304 crossrefType "journal-article" @default.
- W2007320304 hasAuthorship W2007320304A5015059672 @default.
- W2007320304 hasAuthorship W2007320304A5030904862 @default.
- W2007320304 hasAuthorship W2007320304A5034929812 @default.
- W2007320304 hasAuthorship W2007320304A5039224202 @default.
- W2007320304 hasAuthorship W2007320304A5056703680 @default.
- W2007320304 hasConcept C112887158 @default.
- W2007320304 hasConcept C120665830 @default.
- W2007320304 hasConcept C121332964 @default.
- W2007320304 hasConcept C147789679 @default.
- W2007320304 hasConcept C153642686 @default.
- W2007320304 hasConcept C158355884 @default.
- W2007320304 hasConcept C178790620 @default.
- W2007320304 hasConcept C184651966 @default.
- W2007320304 hasConcept C185592680 @default.
- W2007320304 hasConcept C24123453 @default.
- W2007320304 hasConcept C2780471494 @default.
- W2007320304 hasConcept C32909587 @default.
- W2007320304 hasConcept C512968161 @default.
- W2007320304 hasConcept C75473681 @default.
- W2007320304 hasConcept C84662259 @default.
- W2007320304 hasConceptScore W2007320304C112887158 @default.
- W2007320304 hasConceptScore W2007320304C120665830 @default.
- W2007320304 hasConceptScore W2007320304C121332964 @default.
- W2007320304 hasConceptScore W2007320304C147789679 @default.
- W2007320304 hasConceptScore W2007320304C153642686 @default.
- W2007320304 hasConceptScore W2007320304C158355884 @default.