Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007338412> ?p ?o ?g. }
- W2007338412 endingPage "39" @default.
- W2007338412 startingPage "28" @default.
- W2007338412 abstract "• We proposed a software fault detection model using semi-supervised hybrid self-organizing map (HySOM). • The HySOM minimize the role of experts for identifying fault prone modules. • The advantage of HySOM is the ability to predict the label of the modules in a semi-supervised manner. • The experimental results show improvement in false negative rate and overall error rate in 80% and 60% with NASA data sets. Software testing is a crucial task during software development process with the potential to save time and budget by recognizing defects as early as possible and delivering a more defect-free product. To improve the testing process, fault prediction approaches identify parts of the system that are more defect prone. However, when the defect data or quality-based class labels are not identified or the company does not have similar or earlier versions of the software project, researchers cannot use supervised classification methods for defect detection. In order to detect defect proneness of modules in software projects with high accuracy and improve detection model generalization ability, we propose an automated software fault detection model using semi-supervised hybrid self-organizing map (HySOM). HySOM is a semi-supervised model based on self-organizing map and artificial neural network. The advantage of HySOM is the ability to predict the label of the modules in a semi-supervised manner using software measurement threshold values in the absence of quality data. In semi-supervised HySOM, the role of expert for identifying fault prone modules becomes less critical and more supportive. We have benchmarked the proposed model with eight industrial data sets from NASA and Turkish white-goods embedded controller software. The results show improvement in false negative rate and overall error rate in 80% and 60% of the cases respectively for NASA data sets. Moreover, we investigate the performance of the proposed model with other recent proposed methods. According to the results, our semi-supervised model can be used as an automated tool to guide testing effort by prioritizing the module’s defects improving the quality of software development and software testing in less time and budget." @default.
- W2007338412 created "2016-06-24" @default.
- W2007338412 creator A5010706372 @default.
- W2007338412 creator A5042597849 @default.
- W2007338412 creator A5089742876 @default.
- W2007338412 date "2015-01-01" @default.
- W2007338412 modified "2023-10-13" @default.
- W2007338412 title "An empirical study based on semi-supervised hybrid self-organizing map for software fault prediction" @default.
- W2007338412 cites W1485751654 @default.
- W2007338412 cites W1964962870 @default.
- W2007338412 cites W1972222614 @default.
- W2007338412 cites W1980851144 @default.
- W2007338412 cites W1983030745 @default.
- W2007338412 cites W1992312374 @default.
- W2007338412 cites W2026046013 @default.
- W2007338412 cites W2063544392 @default.
- W2007338412 cites W2064104165 @default.
- W2007338412 cites W2074805796 @default.
- W2007338412 cites W2089140201 @default.
- W2007338412 cites W2109362066 @default.
- W2007338412 cites W2137955320 @default.
- W2007338412 cites W2144129629 @default.
- W2007338412 cites W2145793758 @default.
- W2007338412 cites W2151666086 @default.
- W2007338412 cites W2153344230 @default.
- W2007338412 cites W3141989311 @default.
- W2007338412 cites W4244780618 @default.
- W2007338412 cites W65738273 @default.
- W2007338412 cites W78453479 @default.
- W2007338412 doi "https://doi.org/10.1016/j.knosys.2014.10.017" @default.
- W2007338412 hasPublicationYear "2015" @default.
- W2007338412 type Work @default.
- W2007338412 sameAs 2007338412 @default.
- W2007338412 citedByCount "83" @default.
- W2007338412 countsByYear W20073384122015 @default.
- W2007338412 countsByYear W20073384122016 @default.
- W2007338412 countsByYear W20073384122017 @default.
- W2007338412 countsByYear W20073384122018 @default.
- W2007338412 countsByYear W20073384122019 @default.
- W2007338412 countsByYear W20073384122020 @default.
- W2007338412 countsByYear W20073384122021 @default.
- W2007338412 countsByYear W20073384122022 @default.
- W2007338412 countsByYear W20073384122023 @default.
- W2007338412 crossrefType "journal-article" @default.
- W2007338412 hasAuthorship W2007338412A5010706372 @default.
- W2007338412 hasAuthorship W2007338412A5042597849 @default.
- W2007338412 hasAuthorship W2007338412A5089742876 @default.
- W2007338412 hasConcept C111168008 @default.
- W2007338412 hasConcept C111919701 @default.
- W2007338412 hasConcept C119857082 @default.
- W2007338412 hasConcept C124101348 @default.
- W2007338412 hasConcept C127313418 @default.
- W2007338412 hasConcept C134306372 @default.
- W2007338412 hasConcept C136389625 @default.
- W2007338412 hasConcept C152745839 @default.
- W2007338412 hasConcept C154945302 @default.
- W2007338412 hasConcept C162324750 @default.
- W2007338412 hasConcept C165205528 @default.
- W2007338412 hasConcept C172707124 @default.
- W2007338412 hasConcept C175551986 @default.
- W2007338412 hasConcept C177148314 @default.
- W2007338412 hasConcept C187736073 @default.
- W2007338412 hasConcept C199360897 @default.
- W2007338412 hasConcept C2777904410 @default.
- W2007338412 hasConcept C2780451532 @default.
- W2007338412 hasConcept C33923547 @default.
- W2007338412 hasConcept C41008148 @default.
- W2007338412 hasConcept C50644808 @default.
- W2007338412 hasConcept C98045186 @default.
- W2007338412 hasConceptScore W2007338412C111168008 @default.
- W2007338412 hasConceptScore W2007338412C111919701 @default.
- W2007338412 hasConceptScore W2007338412C119857082 @default.
- W2007338412 hasConceptScore W2007338412C124101348 @default.
- W2007338412 hasConceptScore W2007338412C127313418 @default.
- W2007338412 hasConceptScore W2007338412C134306372 @default.
- W2007338412 hasConceptScore W2007338412C136389625 @default.
- W2007338412 hasConceptScore W2007338412C152745839 @default.
- W2007338412 hasConceptScore W2007338412C154945302 @default.
- W2007338412 hasConceptScore W2007338412C162324750 @default.
- W2007338412 hasConceptScore W2007338412C165205528 @default.
- W2007338412 hasConceptScore W2007338412C172707124 @default.
- W2007338412 hasConceptScore W2007338412C175551986 @default.
- W2007338412 hasConceptScore W2007338412C177148314 @default.
- W2007338412 hasConceptScore W2007338412C187736073 @default.
- W2007338412 hasConceptScore W2007338412C199360897 @default.
- W2007338412 hasConceptScore W2007338412C2777904410 @default.
- W2007338412 hasConceptScore W2007338412C2780451532 @default.
- W2007338412 hasConceptScore W2007338412C33923547 @default.
- W2007338412 hasConceptScore W2007338412C41008148 @default.
- W2007338412 hasConceptScore W2007338412C50644808 @default.
- W2007338412 hasConceptScore W2007338412C98045186 @default.
- W2007338412 hasFunder F4320323300 @default.
- W2007338412 hasLocation W20073384121 @default.
- W2007338412 hasOpenAccess W2007338412 @default.
- W2007338412 hasPrimaryLocation W20073384121 @default.
- W2007338412 hasRelatedWork W2161635381 @default.
- W2007338412 hasRelatedWork W2355754418 @default.
- W2007338412 hasRelatedWork W2360356917 @default.