Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007342648> ?p ?o ?g. }
- W2007342648 endingPage "139" @default.
- W2007342648 startingPage "127" @default.
- W2007342648 abstract "Abstract ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from the ESA-led field campaign SPARC (Barrax, Spain) we have compared the utility of four state-of-the-art machine learning regression algorithms and four different S2 and S3 band settings to assess three important biophysical parameters: leaf chlorophyll content ( Chl ), leaf area index (LAI) and fractional vegetation cover (FVC). The tested Sentinel configurations were: S2-10 m (4 bands), S2-20 m (8 bands), S2-60 m (10 bands) and S3-300 m (19 bands), and the tested methods were: neural networks (NN), support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR). GPR outperformed the other retrieval methods for the majority of tested configurations and was the only method that reached the 10% precision required by end users in the estimation of Chl . Also, although validated with an RMSE accuracy around 20%, GPR yielded optimal LAI and FVC estimates at highest S2 spatial resolution of 10 m with only four bands. In addition to high accuracy values, GPR also provided confidence intervals of the estimates and insight in relevant bands, which are key advantages over the other methods. Given all this, GPR proved to be a fast and accurate nonlinear retrieval algorithm that can be potentially implemented for operational monitoring applications." @default.
- W2007342648 created "2016-06-24" @default.
- W2007342648 creator A5003044369 @default.
- W2007342648 creator A5008075763 @default.
- W2007342648 creator A5008454143 @default.
- W2007342648 creator A5039052506 @default.
- W2007342648 creator A5065641673 @default.
- W2007342648 creator A5079448372 @default.
- W2007342648 creator A5087731602 @default.
- W2007342648 date "2012-03-01" @default.
- W2007342648 modified "2023-10-16" @default.
- W2007342648 title "Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3" @default.
- W2007342648 cites W116253160 @default.
- W2007342648 cites W1964272420 @default.
- W2007342648 cites W1964357740 @default.
- W2007342648 cites W1968235624 @default.
- W2007342648 cites W1972226951 @default.
- W2007342648 cites W1978223575 @default.
- W2007342648 cites W2000485836 @default.
- W2007342648 cites W2006280268 @default.
- W2007342648 cites W2007939589 @default.
- W2007342648 cites W2008283621 @default.
- W2007342648 cites W2014955600 @default.
- W2007342648 cites W2016910327 @default.
- W2007342648 cites W2019965926 @default.
- W2007342648 cites W2022114612 @default.
- W2007342648 cites W2030078894 @default.
- W2007342648 cites W2030106896 @default.
- W2007342648 cites W2036003376 @default.
- W2007342648 cites W2039604550 @default.
- W2007342648 cites W2055842947 @default.
- W2007342648 cites W2068286238 @default.
- W2007342648 cites W2072518837 @default.
- W2007342648 cites W2078840559 @default.
- W2007342648 cites W2078996926 @default.
- W2007342648 cites W2080968121 @default.
- W2007342648 cites W2081887174 @default.
- W2007342648 cites W2082867835 @default.
- W2007342648 cites W2088304553 @default.
- W2007342648 cites W2089464686 @default.
- W2007342648 cites W2094420085 @default.
- W2007342648 cites W2095681882 @default.
- W2007342648 cites W2096599785 @default.
- W2007342648 cites W2096996101 @default.
- W2007342648 cites W2097970470 @default.
- W2007342648 cites W2099505124 @default.
- W2007342648 cites W2101478587 @default.
- W2007342648 cites W2114535331 @default.
- W2007342648 cites W2118162171 @default.
- W2007342648 cites W2118791227 @default.
- W2007342648 cites W2122380808 @default.
- W2007342648 cites W2127406961 @default.
- W2007342648 cites W2129359104 @default.
- W2007342648 cites W2129483042 @default.
- W2007342648 cites W2131126673 @default.
- W2007342648 cites W2134967431 @default.
- W2007342648 cites W2139925058 @default.
- W2007342648 cites W2145539952 @default.
- W2007342648 cites W2146514102 @default.
- W2007342648 cites W2146754899 @default.
- W2007342648 cites W2151659169 @default.
- W2007342648 cites W2158628991 @default.
- W2007342648 cites W2159961845 @default.
- W2007342648 cites W2166684966 @default.
- W2007342648 doi "https://doi.org/10.1016/j.rse.2011.11.002" @default.
- W2007342648 hasPublicationYear "2012" @default.
- W2007342648 type Work @default.
- W2007342648 sameAs 2007342648 @default.
- W2007342648 citedByCount "379" @default.
- W2007342648 countsByYear W20073426482012 @default.
- W2007342648 countsByYear W20073426482013 @default.
- W2007342648 countsByYear W20073426482014 @default.
- W2007342648 countsByYear W20073426482015 @default.
- W2007342648 countsByYear W20073426482016 @default.
- W2007342648 countsByYear W20073426482017 @default.
- W2007342648 countsByYear W20073426482018 @default.
- W2007342648 countsByYear W20073426482019 @default.
- W2007342648 countsByYear W20073426482020 @default.
- W2007342648 countsByYear W20073426482021 @default.
- W2007342648 countsByYear W20073426482022 @default.
- W2007342648 countsByYear W20073426482023 @default.
- W2007342648 crossrefType "journal-article" @default.
- W2007342648 hasAuthorship W2007342648A5003044369 @default.
- W2007342648 hasAuthorship W2007342648A5008075763 @default.
- W2007342648 hasAuthorship W2007342648A5008454143 @default.
- W2007342648 hasAuthorship W2007342648A5039052506 @default.
- W2007342648 hasAuthorship W2007342648A5065641673 @default.
- W2007342648 hasAuthorship W2007342648A5079448372 @default.
- W2007342648 hasAuthorship W2007342648A5087731602 @default.
- W2007342648 hasConcept C105795698 @default.
- W2007342648 hasConcept C11413529 @default.
- W2007342648 hasConcept C119857082 @default.
- W2007342648 hasConcept C127313418 @default.
- W2007342648 hasConcept C152877465 @default.
- W2007342648 hasConcept C154945302 @default.
- W2007342648 hasConcept C33923547 @default.
- W2007342648 hasConcept C41008148 @default.
- W2007342648 hasConcept C62649853 @default.