Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007366310> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2007366310 abstract "Abstract Using Pressure-While-Drilling (PWD - measurement of downhole annulus pressure and temperature), an extensive campaign was undertaken on recent North Sea ERD wells to compare measured ECDs and static mud densities with hydraulic model predictions. In addition, the effects of drill pipe rotation and reciprocation have been analysed. The hydraulic model used to calculate downhole pressures predicts fluid downhole density and rheology according to surface properties, pressure and temperature input. Results show that using a Herschel-Bulckley law, ECDs are accurately predicted both in laminar and turbulent regimes. The causes of serious mud losses on two wells have been identified and operational procedures were changed to successfully reduce drilling risks. Introduction Complex wells have made, the control of downhole pressure whilst drilling more and more important. For instance, in HPIHT wells, the margin between pore and fracturing pressures can be very small, sometimes less than 0.1 SG. In such cases, the precise knowledge of downhole equivalent static density and ECD (Equivalent Circulating Density) are therefore of a strategic importance. In current Drilling Engineering, static density is adjusted at the surface and ECDs are calculated using hydraulic models, This practice sometimes leads to uncertainties larger than the required precision. Surface density which is generally measured (using a classical mud balance) in the mud pits or at the mud return is very sensitive to pressure and temperature. Depending on the case downhole density can be smaller or larger than surface density. The main input of ECD models are the well geometry (hole, string including tool joints, BHA, bit), mud rheology (calibrated on classical FANN measurements - mainly Bingham, Ostwald or Herschel-Bulckley) and flow rate. These models generally assume that the drill pipe is centred and they rarely take into account pipe vertical movements (reciprocation) and rotation. There is therefore no doubt that measurement of downhole Pressure1,2 and downhole temperature while drilling should allow to adapt real time the surface mud properties to obtain the required downhole conditions. It can also help in the development and improvement of hydraulics models by providing calibration points. Apart from the validation of static and ECD models a real time acquisition of downhole pressure and temperature can also provide valuable information about operational problems such as:–hole cleaning and optimisation of tripping procedures,–detection of abnormal thick cakes (reduced hole),–detection and control of mud losses,–better optimisation of bit hydraulics,–better estimation of LOT and FIT,–better control of downhole mud properties (mud sagging). The Dunbar field The Dunbar field is located in the northern part of the North Sea (Vicking Graben - Fig. la). The three main targets (below 3500mTVD) are in the middle and bottom Jurassic (respectively Brent and Stafjord reservoirs) and in the Triassic (Lunde reservoir). Depending on the location they can be oil bearing, gas bearing or both. Typical well design, mud weight strategy, and leak of test values are presented in Fig. lb. After batch setting a conductor pipe (26) 80 meters below the sea bed, drilling is initiated in 23 1/2 with a 1.08SG water base mud. The 18 5/8 casing shoe (where a LOT in the range of l.30SG to l.35SG is classically obtained) is set in the boltom of these recent (mainly sandy) sediments." @default.
- W2007366310 created "2016-06-24" @default.
- W2007366310 creator A5018453381 @default.
- W2007366310 creator A5026190416 @default.
- W2007366310 creator A5086966854 @default.
- W2007366310 creator A5090503621 @default.
- W2007366310 date "1998-05-04" @default.
- W2007366310 modified "2023-10-18" @default.
- W2007366310 title "Validation of Advanced Hydraulic Modeling using PWD Data" @default.
- W2007366310 doi "https://doi.org/10.4043/8804-ms" @default.
- W2007366310 hasPublicationYear "1998" @default.
- W2007366310 type Work @default.
- W2007366310 sameAs 2007366310 @default.
- W2007366310 citedByCount "24" @default.
- W2007366310 countsByYear W20073663102012 @default.
- W2007366310 countsByYear W20073663102014 @default.
- W2007366310 countsByYear W20073663102015 @default.
- W2007366310 countsByYear W20073663102016 @default.
- W2007366310 countsByYear W20073663102017 @default.
- W2007366310 countsByYear W20073663102018 @default.
- W2007366310 countsByYear W20073663102022 @default.
- W2007366310 crossrefType "proceedings-article" @default.
- W2007366310 hasAuthorship W2007366310A5018453381 @default.
- W2007366310 hasAuthorship W2007366310A5026190416 @default.
- W2007366310 hasAuthorship W2007366310A5086966854 @default.
- W2007366310 hasAuthorship W2007366310A5090503621 @default.
- W2007366310 hasConcept C121332964 @default.
- W2007366310 hasConcept C127313418 @default.
- W2007366310 hasConcept C127413603 @default.
- W2007366310 hasConcept C150936888 @default.
- W2007366310 hasConcept C152068911 @default.
- W2007366310 hasConcept C159985019 @default.
- W2007366310 hasConcept C187320778 @default.
- W2007366310 hasConcept C192562407 @default.
- W2007366310 hasConcept C196558001 @default.
- W2007366310 hasConcept C25197100 @default.
- W2007366310 hasConcept C2776088076 @default.
- W2007366310 hasConcept C2779402677 @default.
- W2007366310 hasConcept C57879066 @default.
- W2007366310 hasConcept C58059514 @default.
- W2007366310 hasConcept C76563973 @default.
- W2007366310 hasConcept C78519656 @default.
- W2007366310 hasConcept C78762247 @default.
- W2007366310 hasConceptScore W2007366310C121332964 @default.
- W2007366310 hasConceptScore W2007366310C127313418 @default.
- W2007366310 hasConceptScore W2007366310C127413603 @default.
- W2007366310 hasConceptScore W2007366310C150936888 @default.
- W2007366310 hasConceptScore W2007366310C152068911 @default.
- W2007366310 hasConceptScore W2007366310C159985019 @default.
- W2007366310 hasConceptScore W2007366310C187320778 @default.
- W2007366310 hasConceptScore W2007366310C192562407 @default.
- W2007366310 hasConceptScore W2007366310C196558001 @default.
- W2007366310 hasConceptScore W2007366310C25197100 @default.
- W2007366310 hasConceptScore W2007366310C2776088076 @default.
- W2007366310 hasConceptScore W2007366310C2779402677 @default.
- W2007366310 hasConceptScore W2007366310C57879066 @default.
- W2007366310 hasConceptScore W2007366310C58059514 @default.
- W2007366310 hasConceptScore W2007366310C76563973 @default.
- W2007366310 hasConceptScore W2007366310C78519656 @default.
- W2007366310 hasConceptScore W2007366310C78762247 @default.
- W2007366310 hasLocation W20073663101 @default.
- W2007366310 hasOpenAccess W2007366310 @default.
- W2007366310 hasPrimaryLocation W20073663101 @default.
- W2007366310 hasRelatedWork W1979538668 @default.
- W2007366310 hasRelatedWork W2113574910 @default.
- W2007366310 hasRelatedWork W2379207587 @default.
- W2007366310 hasRelatedWork W2574072101 @default.
- W2007366310 hasRelatedWork W2751341990 @default.
- W2007366310 hasRelatedWork W2784980483 @default.
- W2007366310 hasRelatedWork W2797734131 @default.
- W2007366310 hasRelatedWork W2984794706 @default.
- W2007366310 hasRelatedWork W3193802578 @default.
- W2007366310 hasRelatedWork W4242924788 @default.
- W2007366310 isParatext "false" @default.
- W2007366310 isRetracted "false" @default.
- W2007366310 magId "2007366310" @default.
- W2007366310 workType "article" @default.