Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007368046> ?p ?o ?g. }
- W2007368046 endingPage "1881" @default.
- W2007368046 startingPage "1861" @default.
- W2007368046 abstract "Visual detection and discrimination thresholds are often measured using adaptive staircases, and most studies use transformed (or weighted) up/down methods with fixed step sizes—in the spirit of Wetherill and Levitt (Br J Mathemat Statist Psychol 1965;18:1–10) or Kaernbach (Percept Psychophys 1991;49:227–229)—instead of changing step size at each trial in accordance with best-placement rules—in the spirit of Watson and Pelli (Percept Psychophys 1983;47:87–91). It is generally assumed that a fixed-step-size (FSS) staircase converges on the stimulus level at which a correct response occurs with the probabilities derived by Wetherill and Levitt or Kaernbach, but this has never been proved rigorously. This work used simulation techniques to determine the asymptotic and small-sample convergence of FSS staircases as a function of such parameters as the up/down rule, the size of the steps up or down, the starting stimulus level, or the spread of the psychometric function. The results showed that the asymptotic convergence of FSS staircases depends much more on the sizes of the steps than it does on the up/down rule. Yet, if the size Δ + of a step up differs from the size Δ − of a step down in a way that the ratio Δ − /Δ + is constant at a specific value that changes with up/down rule, then convergence percent-correct is unaffected by the absolute sizes of the steps. For use with the popular one-, two-, three- and four-down/one-up rules, these ratios must respectively be set at 0.2845, 0.5488, 0.7393 and 0.8415, rendering staircases that converge on the 77.85%-, 80.35%-, 83.15%- and 85.84%-correct points. Wetherill and Levitt's transformed up/down rules—which require Δ − /Δ + =1—and the general version of Kaernbach's weighted up/down rule—which allows any Δ − /Δ + ratio—fail to reach their presumed targets. The small-sample study showed that, even with the optimal settings, short FSS staircases (up to 20 reversals in length) are subject to some bias, and their precision is less than reasonable, but their characteristics improve when the size Δ + of a step up is larger than half the spread of the psychometric function. Practical recommendations are given for the design of efficient and trustworthy FSS staircases." @default.
- W2007368046 created "2016-06-24" @default.
- W2007368046 creator A5039552042 @default.
- W2007368046 date "1998-06-01" @default.
- W2007368046 modified "2023-10-18" @default.
- W2007368046 title "Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties" @default.
- W2007368046 cites W1576968360 @default.
- W2007368046 cites W1583403870 @default.
- W2007368046 cites W1771352618 @default.
- W2007368046 cites W1965384882 @default.
- W2007368046 cites W1965412740 @default.
- W2007368046 cites W1965874744 @default.
- W2007368046 cites W1967554513 @default.
- W2007368046 cites W1968914856 @default.
- W2007368046 cites W1969172084 @default.
- W2007368046 cites W1969928791 @default.
- W2007368046 cites W1971027043 @default.
- W2007368046 cites W1973761097 @default.
- W2007368046 cites W1974866944 @default.
- W2007368046 cites W1975495723 @default.
- W2007368046 cites W1975972594 @default.
- W2007368046 cites W1981408892 @default.
- W2007368046 cites W1982619967 @default.
- W2007368046 cites W1983504931 @default.
- W2007368046 cites W1986384452 @default.
- W2007368046 cites W1986486736 @default.
- W2007368046 cites W1987086782 @default.
- W2007368046 cites W1988773134 @default.
- W2007368046 cites W1989123772 @default.
- W2007368046 cites W1991384021 @default.
- W2007368046 cites W1993007904 @default.
- W2007368046 cites W1993519028 @default.
- W2007368046 cites W1994515494 @default.
- W2007368046 cites W1996112856 @default.
- W2007368046 cites W1996147573 @default.
- W2007368046 cites W1998546707 @default.
- W2007368046 cites W2005462372 @default.
- W2007368046 cites W2005611163 @default.
- W2007368046 cites W2007349194 @default.
- W2007368046 cites W2007420884 @default.
- W2007368046 cites W2007727105 @default.
- W2007368046 cites W2011302164 @default.
- W2007368046 cites W2013014728 @default.
- W2007368046 cites W2018036893 @default.
- W2007368046 cites W2018364788 @default.
- W2007368046 cites W2022250796 @default.
- W2007368046 cites W2022317704 @default.
- W2007368046 cites W2022896019 @default.
- W2007368046 cites W2027916183 @default.
- W2007368046 cites W2030151919 @default.
- W2007368046 cites W2030331481 @default.
- W2007368046 cites W2032639540 @default.
- W2007368046 cites W2035699242 @default.
- W2007368046 cites W2038070717 @default.
- W2007368046 cites W2040249719 @default.
- W2007368046 cites W2041180798 @default.
- W2007368046 cites W2042421136 @default.
- W2007368046 cites W2043010577 @default.
- W2007368046 cites W2043111833 @default.
- W2007368046 cites W2043241292 @default.
- W2007368046 cites W2043972358 @default.
- W2007368046 cites W2045617262 @default.
- W2007368046 cites W2046616321 @default.
- W2007368046 cites W2047624545 @default.
- W2007368046 cites W2049602612 @default.
- W2007368046 cites W2050076340 @default.
- W2007368046 cites W2051555035 @default.
- W2007368046 cites W2052520476 @default.
- W2007368046 cites W2053285570 @default.
- W2007368046 cites W2054610335 @default.
- W2007368046 cites W2056845469 @default.
- W2007368046 cites W2060978224 @default.
- W2007368046 cites W2061415964 @default.
- W2007368046 cites W2063048819 @default.
- W2007368046 cites W2063911252 @default.
- W2007368046 cites W2072026886 @default.
- W2007368046 cites W2074474002 @default.
- W2007368046 cites W2075205730 @default.
- W2007368046 cites W2078254043 @default.
- W2007368046 cites W2080450994 @default.
- W2007368046 cites W2080910715 @default.
- W2007368046 cites W2082990480 @default.
- W2007368046 cites W2083785917 @default.
- W2007368046 cites W2085635484 @default.
- W2007368046 cites W2087230696 @default.
- W2007368046 cites W2087998212 @default.
- W2007368046 cites W2088074846 @default.
- W2007368046 cites W2089681847 @default.
- W2007368046 cites W2090516535 @default.
- W2007368046 cites W2091837964 @default.
- W2007368046 cites W2093219741 @default.
- W2007368046 cites W2095041702 @default.
- W2007368046 cites W2100567386 @default.
- W2007368046 cites W2102409357 @default.
- W2007368046 cites W2117510594 @default.
- W2007368046 cites W2136718092 @default.
- W2007368046 cites W2141681543 @default.
- W2007368046 cites W2142299689 @default.