Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007382693> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2007382693 endingPage "3880" @default.
- W2007382693 startingPage "3865" @default.
- W2007382693 abstract "Adaptive control of traffic lights is a key component of any intelligent transportation system. Many real-time traffic light control (TLC) algorithms are based on graded thresholds, because precise information about the traffic congestion in the road network is hard to obtain in practice. For example, using thresholds <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$L_{1}$</tex></formula> and <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$L_{2}$</tex> </formula> , we could mark the congestion level on a particular lane as “low,” “medium,” or “high” based on whether the queue length on the lane is below <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$L_{1}$ </tex></formula> , between <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$L_{1}$</tex></formula> and <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$L_{2}$</tex></formula> , or above <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$L_{2}$</tex> </formula> , respectively. However, the TLC algorithms that were proposed in the literature incorporate fixed values for the thresholds, which, in general, are not optimal for all traffic conditions. In this paper, we present an algorithm based on stochastic optimization to tune the thresholds that are associated with a TLC algorithm for optimal performance. We also propose the following three novel TLC algorithms: 1) a full-state Q-learning algorithm with state aggregation, 2) a Q-learning algorithm with function approximation that involves an enhanced feature selection scheme, and 3) a priority-based TLC scheme. All these algorithms are threshold based. Next, we combine the threshold-tuning algorithm with the three aforementioned algorithms. Such a combination results in several interesting consequences. For example, in the case of Q-learning with full-state representation, our threshold-tuning algorithm suggests an optimal way of clustering states to reduce the cardinality of the state space, and in the case of the Q-learning algorithm with function approximation, our (threshold-tuning) algorithm provides a novel feature adaptation scheme to obtain an “optimal” selection of features. Our tuning algorithm is an incremental-update online scheme with proven convergence to the optimal values of thresholds. Moreover, the additional computational effort that is required because of the integration of the tuning scheme in any of the graded-threshold-based TLC algorithms is minimal. Simulation results show a significant gain in performance when our threshold-tuning algorithm is used in conjunction with various TLC algorithms compared to the original TLC algorithms without tuning and with fixed thresholds." @default.
- W2007382693 created "2016-06-24" @default.
- W2007382693 creator A5038163398 @default.
- W2007382693 creator A5068379567 @default.
- W2007382693 date "2012-11-01" @default.
- W2007382693 modified "2023-09-27" @default.
- W2007382693 title "Threshold Tuning Using Stochastic Optimization for Graded Signal Control" @default.
- W2007382693 cites W1575904939 @default.
- W2007382693 cites W1914389580 @default.
- W2007382693 cites W2001581518 @default.
- W2007382693 cites W2002803284 @default.
- W2007382693 cites W2012117977 @default.
- W2007382693 cites W2013534088 @default.
- W2007382693 cites W2028086727 @default.
- W2007382693 cites W2048303595 @default.
- W2007382693 cites W2050676627 @default.
- W2007382693 cites W2065134213 @default.
- W2007382693 cites W2095383927 @default.
- W2007382693 cites W2101460915 @default.
- W2007382693 cites W2112189805 @default.
- W2007382693 cites W2115020145 @default.
- W2007382693 cites W2124289529 @default.
- W2007382693 cites W2124657875 @default.
- W2007382693 cites W2125001944 @default.
- W2007382693 cites W2125852847 @default.
- W2007382693 cites W2129600986 @default.
- W2007382693 cites W2132731087 @default.
- W2007382693 cites W2132775962 @default.
- W2007382693 cites W2133571645 @default.
- W2007382693 cites W2139728973 @default.
- W2007382693 cites W2144566913 @default.
- W2007382693 cites W2149012699 @default.
- W2007382693 cites W2150152677 @default.
- W2007382693 cites W2151361137 @default.
- W2007382693 cites W2154500405 @default.
- W2007382693 cites W2235056388 @default.
- W2007382693 cites W2565654137 @default.
- W2007382693 cites W3004125297 @default.
- W2007382693 cites W3023917962 @default.
- W2007382693 cites W4238339534 @default.
- W2007382693 cites W4243772471 @default.
- W2007382693 doi "https://doi.org/10.1109/tvt.2012.2209904" @default.
- W2007382693 hasPublicationYear "2012" @default.
- W2007382693 type Work @default.
- W2007382693 sameAs 2007382693 @default.
- W2007382693 citedByCount "38" @default.
- W2007382693 countsByYear W20073826932013 @default.
- W2007382693 countsByYear W20073826932014 @default.
- W2007382693 countsByYear W20073826932015 @default.
- W2007382693 countsByYear W20073826932016 @default.
- W2007382693 countsByYear W20073826932017 @default.
- W2007382693 countsByYear W20073826932018 @default.
- W2007382693 countsByYear W20073826932019 @default.
- W2007382693 countsByYear W20073826932020 @default.
- W2007382693 countsByYear W20073826932021 @default.
- W2007382693 countsByYear W20073826932022 @default.
- W2007382693 countsByYear W20073826932023 @default.
- W2007382693 crossrefType "journal-article" @default.
- W2007382693 hasAuthorship W2007382693A5038163398 @default.
- W2007382693 hasAuthorship W2007382693A5068379567 @default.
- W2007382693 hasConcept C11413529 @default.
- W2007382693 hasConcept C118615104 @default.
- W2007382693 hasConcept C33923547 @default.
- W2007382693 hasConcept C41008148 @default.
- W2007382693 hasConcept C45357846 @default.
- W2007382693 hasConcept C94375191 @default.
- W2007382693 hasConceptScore W2007382693C11413529 @default.
- W2007382693 hasConceptScore W2007382693C118615104 @default.
- W2007382693 hasConceptScore W2007382693C33923547 @default.
- W2007382693 hasConceptScore W2007382693C41008148 @default.
- W2007382693 hasConceptScore W2007382693C45357846 @default.
- W2007382693 hasConceptScore W2007382693C94375191 @default.
- W2007382693 hasIssue "9" @default.
- W2007382693 hasLocation W20073826931 @default.
- W2007382693 hasOpenAccess W2007382693 @default.
- W2007382693 hasPrimaryLocation W20073826931 @default.
- W2007382693 hasRelatedWork W2052747888 @default.
- W2007382693 hasRelatedWork W2085861978 @default.
- W2007382693 hasRelatedWork W2090686886 @default.
- W2007382693 hasRelatedWork W2333698505 @default.
- W2007382693 hasRelatedWork W2334965593 @default.
- W2007382693 hasRelatedWork W2351491280 @default.
- W2007382693 hasRelatedWork W2371447506 @default.
- W2007382693 hasRelatedWork W2386767533 @default.
- W2007382693 hasRelatedWork W2391079003 @default.
- W2007382693 hasRelatedWork W303980170 @default.
- W2007382693 hasVolume "61" @default.
- W2007382693 isParatext "false" @default.
- W2007382693 isRetracted "false" @default.
- W2007382693 magId "2007382693" @default.
- W2007382693 workType "article" @default.