Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007392505> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2007392505 endingPage "1041" @default.
- W2007392505 startingPage "1039" @default.
- W2007392505 abstract "Two encouraging articles in the current issue highlight the increasing use of stereotactic radiotherapeutic techniques (20) for treating intracranial tumors, either with the “gamma knife” (6), or with linear accelerators (21). It is now reasonably well established (12, 19) that stereotactic radiotherapy with only a single fraction, often called radiosurgery, represents a suboptimal treatment technique for treating tumors, compared with a fractionated treatment. This is true from the point of view of tumor reoxygenation, and also of sublethal damage repair of earlyand late-responding tissues. In short, it is to be expected that a single fraction (a) would be unable to sterilize a significant fraction of hypoxic tumor cells and (b) would effectively limit the tumor dose that could be delivered, due to induction of limiting late-responding normal-tissue complications. It should be noted that none of these arguments apply to arteriovenous malformations (AVM’s), which are probably adequately treated with a single fraction ( 12). The results in both papers in the current issue, while extremely promising, support the notion that even better clinical results are achievable with fractionation. Mendenhall et al. (2 1) used single-fractionated stereotactic radiotherapy to treat acoustic schwannomas; they were forced to reduce the prescribed dose due to unacceptable normal-tissue damage in the form of cranial-nerve deficit. Flickinger et al. (6) report a multicenter trial in which single-fraction radiosurgery, combined with fractionated external-beam radiotherapy, was used to treat solitary brain metastases. They reported a 2-year actuarial tumorcontrol rate of 67%. It seems likely that both trials could have benefited from fractionating the dose, either in terms of decreased late effects and/or improved tumor control. Flickinger et al. (6) perhaps recognize this, suggesting that fractionated large-field radiotherapy combined with singlefraction radiosurgery might be a logistically easier way to exploit fractionation, rather than using fractionated stereotactic radiotherapy. However, the development and commercial availability of practical relocatable stereotactic head frames (4, 8-10, 13-16,25, 27) now makes fractionated stereotactic radiotherapy a real option, maintaining the good dose distribution of radiosurgery, together with the biological advantages of fractionation. If fractionated stereotactic radiotherapy is to be used, the question arises as to how many fractions to use and in what overall time? [The issue of total dose has been addressed elsewhere (2).] Fractionation schemes that have been used in the clinic for stereotactic radiotherapy of intracranial tumors vary from “conventional” daily fractionation (1.8-2 Gy/day) used, for example, at the Joint Center for Radiation Therapy (5), and at the University of Miami (18, 26), to various types of accelerated hypofractionation such as at McGill University [six fractions in 2 weeks (3)], Vicenza, [two fractions in 1 week (22)], Royal Marsden Hospital [two to ten daily fractions (1, 17)], and Virginia Mason, Seattle [two to five daily fractions (23)]. Other than the need for some kind of fractionation, as of now, no clear rationale has been stated for the choice of fractionation scheme, although Clark et al. (3) suggest that their accelerated hypofractionation regimen (six fractions in 2 weeks) is “chosen for practical reasons, as a compromise between the large numbers of fractions used in standard radiotherapy, and dose delivery in a single session used in radiosurgery”. We suggest here that a scientific rationale does exist for choosing fractionation schemes for stereotactic radiotherapy of brain tumors. Withers et al. (29) and many" @default.
- W2007392505 created "2016-06-24" @default.
- W2007392505 creator A5011597168 @default.
- W2007392505 creator A5048201953 @default.
- W2007392505 date "1994-03-01" @default.
- W2007392505 modified "2023-10-14" @default.
- W2007392505 title "Stereotactic radiotherapy of intracranial tumors—An ideal candidate for accelerated treatment" @default.
- W2007392505 cites W1971747664 @default.
- W2007392505 cites W1991186532 @default.
- W2007392505 cites W1991881143 @default.
- W2007392505 cites W1995666732 @default.
- W2007392505 cites W2006812243 @default.
- W2007392505 cites W2007487485 @default.
- W2007392505 cites W2008292566 @default.
- W2007392505 cites W2010574219 @default.
- W2007392505 cites W2012433527 @default.
- W2007392505 cites W2039573486 @default.
- W2007392505 cites W2047327354 @default.
- W2007392505 cites W2049724333 @default.
- W2007392505 cites W2062662925 @default.
- W2007392505 cites W2066907256 @default.
- W2007392505 cites W2068719092 @default.
- W2007392505 cites W2077964273 @default.
- W2007392505 cites W2084710002 @default.
- W2007392505 cites W2097587976 @default.
- W2007392505 cites W2105150213 @default.
- W2007392505 cites W2118630631 @default.
- W2007392505 cites W2171841874 @default.
- W2007392505 cites W2172222735 @default.
- W2007392505 cites W2289264691 @default.
- W2007392505 doi "https://doi.org/10.1016/0360-3016(94)90126-0" @default.
- W2007392505 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8138429" @default.
- W2007392505 hasPublicationYear "1994" @default.
- W2007392505 type Work @default.
- W2007392505 sameAs 2007392505 @default.
- W2007392505 citedByCount "26" @default.
- W2007392505 countsByYear W20073925052012 @default.
- W2007392505 countsByYear W20073925052016 @default.
- W2007392505 crossrefType "journal-article" @default.
- W2007392505 hasAuthorship W2007392505A5011597168 @default.
- W2007392505 hasAuthorship W2007392505A5048201953 @default.
- W2007392505 hasConcept C111472728 @default.
- W2007392505 hasConcept C126838900 @default.
- W2007392505 hasConcept C138885662 @default.
- W2007392505 hasConcept C19527891 @default.
- W2007392505 hasConcept C2776639384 @default.
- W2007392505 hasConcept C2780387249 @default.
- W2007392505 hasConcept C2992393070 @default.
- W2007392505 hasConcept C509974204 @default.
- W2007392505 hasConcept C71924100 @default.
- W2007392505 hasConceptScore W2007392505C111472728 @default.
- W2007392505 hasConceptScore W2007392505C126838900 @default.
- W2007392505 hasConceptScore W2007392505C138885662 @default.
- W2007392505 hasConceptScore W2007392505C19527891 @default.
- W2007392505 hasConceptScore W2007392505C2776639384 @default.
- W2007392505 hasConceptScore W2007392505C2780387249 @default.
- W2007392505 hasConceptScore W2007392505C2992393070 @default.
- W2007392505 hasConceptScore W2007392505C509974204 @default.
- W2007392505 hasConceptScore W2007392505C71924100 @default.
- W2007392505 hasIssue "4" @default.
- W2007392505 hasLocation W20073925051 @default.
- W2007392505 hasLocation W20073925052 @default.
- W2007392505 hasOpenAccess W2007392505 @default.
- W2007392505 hasPrimaryLocation W20073925051 @default.
- W2007392505 hasRelatedWork W1972672654 @default.
- W2007392505 hasRelatedWork W2039595483 @default.
- W2007392505 hasRelatedWork W2061245727 @default.
- W2007392505 hasRelatedWork W2076005400 @default.
- W2007392505 hasRelatedWork W2076693730 @default.
- W2007392505 hasRelatedWork W2129183484 @default.
- W2007392505 hasRelatedWork W2379084329 @default.
- W2007392505 hasRelatedWork W2388910868 @default.
- W2007392505 hasRelatedWork W2904971576 @default.
- W2007392505 hasRelatedWork W3012982787 @default.
- W2007392505 hasVolume "28" @default.
- W2007392505 isParatext "false" @default.
- W2007392505 isRetracted "false" @default.
- W2007392505 magId "2007392505" @default.
- W2007392505 workType "article" @default.