Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007411307> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2007411307 endingPage "54" @default.
- W2007411307 startingPage "40" @default.
- W2007411307 abstract "We report results of a detailed geochemical study of surface waters from several streams in a small catchment in northern New Brunswick, Canada. Rocks in the catchment represent metamorphosed (greenschist facies) felsic volcanic rocks, metavolcaniclastic sediments, and mafic volcanic rocks; no massive carbonate or evaporite lithologies are present, thus providing an excellent opportunity to investigate the relative influence of silicate weathering compared to trace carbonate (vein and disseminated) dissolution and the influence of volcanogenic massive sulfide (VMS) mineralization on surface water chemistry. Surface waters, catchment lithologies and stream sediments were analyzed for a full suite of major and trace elements. Surface waters are dilute (typically < 60 mg/L total dissolved solids), and are of dominantly Ca–HCO3-type. Most waters have Ca/Namolar > 1. The major ion chemistry of the waters is consistent with binary mixing between silicate weathering and dissolution of trace calcite; Si/Camolar relationships suggest that trace calcic silicates are insignificant compared to calcite as a Ca source, and PO4 concentrations of waters are too low for apatite to be a major source of Ca. Host rocks have highly variable Ca/Na, Mg/Na and K/Na values complicating the assignment of a silicate end-member. Geochemical modeling indicates that surface waters range from essentially 100% of the Na and Ca being derived by silicate weathering, to being dominantly controlled by trace calcite, also consistent with mass balance calculations. The Cl/Ca ratios are consistent with the host felsic and mafic metavolcanic rocks as being an important source of Cl in addition to precipitation. The host lithologies have much larger variations in Mg/Na, Ca/Na, K/Na, and Sr/Na than the stream sediments and waters and the sediments are shifted to higher Mg/Na and K/Na and lower Ca/Na than the waters. It is remarkable that the waters have such small variations in major ion ratios relative to the host rocks, indicating that the controls on solute loads of these streams is more a function of relative elemental solubility (Ca > Mg > Na), secondary mineral formation (e.g. Mg- and K-rich clays), incongruent dissolution, and water–rock reactions than end-member rock compositions. Oxidation of massive and disseminated sulfide mineralization accounts for on average 60% of the dissolved sulfate. Calculations indicate that sulfide oxidation (sulfuric acid) weathering accounts for around 20% of the cation flux in the watershed. On average 12% of the Ca and 72% of the Mg are derived from silicate weathering, although cationic silicate denudation rates are only 1.88 tonnes/km2/year compared to 4.16 tonnes/km2/year for trace carbonate dissolution. The total cation denudation rate and CO2 consumption rate are similar to watersheds draining volcanic rocks in the Western Canadian Cordillera." @default.
- W2007411307 created "2016-06-24" @default.
- W2007411307 creator A5042158045 @default.
- W2007411307 creator A5074044274 @default.
- W2007411307 date "2010-12-01" @default.
- W2007411307 modified "2023-09-26" @default.
- W2007411307 title "Geochemistry of surface waters associated with an undisturbed Zn–Pb massive sulfide deposit: Water–rock reactions, solute sources and the role of trace carbonate" @default.
- W2007411307 cites W1968815940 @default.
- W2007411307 cites W1972422619 @default.
- W2007411307 cites W1974691910 @default.
- W2007411307 cites W1977979180 @default.
- W2007411307 cites W1982243378 @default.
- W2007411307 cites W1987435024 @default.
- W2007411307 cites W1987776011 @default.
- W2007411307 cites W1993280670 @default.
- W2007411307 cites W1997935814 @default.
- W2007411307 cites W1998351750 @default.
- W2007411307 cites W2001284976 @default.
- W2007411307 cites W2007034579 @default.
- W2007411307 cites W2008587428 @default.
- W2007411307 cites W2011003782 @default.
- W2007411307 cites W2015996529 @default.
- W2007411307 cites W2019749144 @default.
- W2007411307 cites W2021805653 @default.
- W2007411307 cites W2022683665 @default.
- W2007411307 cites W2023108824 @default.
- W2007411307 cites W2025213474 @default.
- W2007411307 cites W2026170101 @default.
- W2007411307 cites W2035859777 @default.
- W2007411307 cites W2041737031 @default.
- W2007411307 cites W2042962539 @default.
- W2007411307 cites W2045054458 @default.
- W2007411307 cites W2045082996 @default.
- W2007411307 cites W2052033963 @default.
- W2007411307 cites W2067192849 @default.
- W2007411307 cites W2068643896 @default.
- W2007411307 cites W2073034460 @default.
- W2007411307 cites W2080835316 @default.
- W2007411307 cites W2083907710 @default.
- W2007411307 cites W2085776063 @default.
- W2007411307 cites W2110314120 @default.
- W2007411307 cites W2146010845 @default.
- W2007411307 cites W2149235555 @default.
- W2007411307 cites W2485646210 @default.
- W2007411307 doi "https://doi.org/10.1016/j.chemgeo.2010.10.002" @default.
- W2007411307 hasPublicationYear "2010" @default.
- W2007411307 type Work @default.
- W2007411307 sameAs 2007411307 @default.
- W2007411307 citedByCount "18" @default.
- W2007411307 countsByYear W20074113072013 @default.
- W2007411307 countsByYear W20074113072014 @default.
- W2007411307 countsByYear W20074113072015 @default.
- W2007411307 countsByYear W20074113072016 @default.
- W2007411307 countsByYear W20074113072019 @default.
- W2007411307 countsByYear W20074113072020 @default.
- W2007411307 countsByYear W20074113072021 @default.
- W2007411307 countsByYear W20074113072022 @default.
- W2007411307 countsByYear W20074113072023 @default.
- W2007411307 crossrefType "journal-article" @default.
- W2007411307 hasAuthorship W2007411307A5042158045 @default.
- W2007411307 hasAuthorship W2007411307A5074044274 @default.
- W2007411307 hasConcept C127313418 @default.
- W2007411307 hasConcept C17409809 @default.
- W2007411307 hasConcept C178790620 @default.
- W2007411307 hasConcept C185592680 @default.
- W2007411307 hasConcept C19320362 @default.
- W2007411307 hasConcept C199289684 @default.
- W2007411307 hasConcept C2780596425 @default.
- W2007411307 hasConcept C2780659211 @default.
- W2007411307 hasConcept C6494504 @default.
- W2007411307 hasConceptScore W2007411307C127313418 @default.
- W2007411307 hasConceptScore W2007411307C17409809 @default.
- W2007411307 hasConceptScore W2007411307C178790620 @default.
- W2007411307 hasConceptScore W2007411307C185592680 @default.
- W2007411307 hasConceptScore W2007411307C19320362 @default.
- W2007411307 hasConceptScore W2007411307C199289684 @default.
- W2007411307 hasConceptScore W2007411307C2780596425 @default.
- W2007411307 hasConceptScore W2007411307C2780659211 @default.
- W2007411307 hasConceptScore W2007411307C6494504 @default.
- W2007411307 hasIssue "1-2" @default.
- W2007411307 hasLocation W20074113071 @default.
- W2007411307 hasOpenAccess W2007411307 @default.
- W2007411307 hasPrimaryLocation W20074113071 @default.
- W2007411307 hasRelatedWork W2040993944 @default.
- W2007411307 hasRelatedWork W2102481219 @default.
- W2007411307 hasRelatedWork W2131200549 @default.
- W2007411307 hasRelatedWork W2370495315 @default.
- W2007411307 hasRelatedWork W2372245997 @default.
- W2007411307 hasRelatedWork W2385515337 @default.
- W2007411307 hasRelatedWork W2391823592 @default.
- W2007411307 hasRelatedWork W2578010441 @default.
- W2007411307 hasRelatedWork W2774111268 @default.
- W2007411307 hasRelatedWork W2955818471 @default.
- W2007411307 hasVolume "279" @default.
- W2007411307 isParatext "false" @default.
- W2007411307 isRetracted "false" @default.
- W2007411307 magId "2007411307" @default.
- W2007411307 workType "article" @default.