Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007456476> ?p ?o ?g. }
- W2007456476 endingPage "181" @default.
- W2007456476 startingPage "169" @default.
- W2007456476 abstract "This Account highlights William von Eggers Doering’s important discoveries in many fields of chemistry. His synthetic and mechanistic studies have contributed to areas including non-benzenoid aromatics, carbenes, pericyclic reactions, and diradical intermediates. Doering’s synthesis with L. H. Knox of the highly stable tropylium ion and their investigation of its reactivity were the starting point for the development of the field of non-benzenoid aromatics. Working with A. K. Hoffmann, Doering demonstrated the synthesis of dichloro- and dibromocarbene by base-induced α elimination of HCl or HBr from CHCl3 or CHBr3 under anhydrous conditions. These results allowed for the synthesis of a variety of cyclopropanes and derivatives including allenes. Using 14C labeling experiments, Doering and Prinzbach showed that the mechanism of insertion of singlet methylene into a C−H bond was a concerted process. In their work on the Cope rearrangement, Doering and Roth’s outstanding stereochemical analysis showed that the rearrangement of acyclic 1,5-hexadienes proceeds concertedly, passing over a chairlike transition state. This work has had an enormous impact on the understanding of stereochemical control in synthetic organic chemistry, and many fruitful applications in synthesis have stemmed directly from this finding. Transition-state resonance structures analogous to those for ground-state aromatics can qualitatively explain the relatively large substituent effects on the rate of the Cope rearrangement. However, quantum chemical calculations have quantitatively described these effects. The rapid degenerate Cope rearrangements in the cis-divinylcyclopropane units of 3,4-homotropilidene, barbaralone, and bullvalene establish these molecules as having fluxional structures. The unique molecule bullvalene has more than 1.2 million possible structures interconnected by degenerate Cope rearrangements, which average all H and all C atoms. Doering has also examined stepwise thermal reorganizations that pass through intermediary 1,3- or 1,4-diradicals and do not show conformational equilibration as would be expected for classical intermediates. Doering calls these processes “not-obviously concerted”. He discusses “continuous diradicals” as transition states and rationalizes the course of these reactions through the concept of a “caldera” (a flat surface with small energy wells as found on the top of volcanoes). The understanding of fundamental chemical reactions remains the focus of Doering’s research. In his terms, “understanding” means not only gaining deep insight but also the intellectual control that allows researchers to predict a reaction’s course. Because the interplay between theory and experiment has led to great progress in this predictive ability, Doering’s experimental work has provided an important input for computational chemistry and to the essential understanding of chemical reactions." @default.
- W2007456476 created "2016-06-24" @default.
- W2007456476 creator A5013647313 @default.
- W2007456476 creator A5019152554 @default.
- W2007456476 creator A5040190114 @default.
- W2007456476 date "2008-08-27" @default.
- W2007456476 modified "2023-09-25" @default.
- W2007456476 title "William von Eggers Doering’s Many Research Achievements during the First 65 Years of his Career in Chemistry" @default.
- W2007456476 cites W1967161636 @default.
- W2007456476 cites W1973505962 @default.
- W2007456476 cites W1984897967 @default.
- W2007456476 cites W1986686065 @default.
- W2007456476 cites W1995678815 @default.
- W2007456476 cites W1999081447 @default.
- W2007456476 cites W2000035376 @default.
- W2007456476 cites W2008844584 @default.
- W2007456476 cites W2010537355 @default.
- W2007456476 cites W2014160042 @default.
- W2007456476 cites W2014377908 @default.
- W2007456476 cites W2017593954 @default.
- W2007456476 cites W2021811173 @default.
- W2007456476 cites W2024055578 @default.
- W2007456476 cites W2025495088 @default.
- W2007456476 cites W2051130392 @default.
- W2007456476 cites W2052985066 @default.
- W2007456476 cites W2053270747 @default.
- W2007456476 cites W2061151413 @default.
- W2007456476 cites W2064330160 @default.
- W2007456476 cites W2066539787 @default.
- W2007456476 cites W2074645327 @default.
- W2007456476 cites W2084453375 @default.
- W2007456476 cites W2087478815 @default.
- W2007456476 cites W2088159007 @default.
- W2007456476 cites W2090747786 @default.
- W2007456476 cites W2097100543 @default.
- W2007456476 cites W2107527442 @default.
- W2007456476 cites W2112283613 @default.
- W2007456476 cites W2130578590 @default.
- W2007456476 cites W2138745457 @default.
- W2007456476 cites W2144689487 @default.
- W2007456476 cites W2145120877 @default.
- W2007456476 cites W2145416801 @default.
- W2007456476 cites W2145718294 @default.
- W2007456476 cites W2148762423 @default.
- W2007456476 cites W2150577343 @default.
- W2007456476 cites W2163031509 @default.
- W2007456476 cites W2166269061 @default.
- W2007456476 cites W2167837377 @default.
- W2007456476 cites W2316940432 @default.
- W2007456476 cites W2319994400 @default.
- W2007456476 cites W2321779895 @default.
- W2007456476 cites W2326305097 @default.
- W2007456476 cites W2328096297 @default.
- W2007456476 cites W2334306583 @default.
- W2007456476 cites W2335088749 @default.
- W2007456476 cites W2335687225 @default.
- W2007456476 cites W2950604685 @default.
- W2007456476 cites W2951254453 @default.
- W2007456476 cites W4238530521 @default.
- W2007456476 cites W4238986633 @default.
- W2007456476 cites W4240691056 @default.
- W2007456476 cites W4241476365 @default.
- W2007456476 cites W4255310341 @default.
- W2007456476 doi "https://doi.org/10.1021/ar800100h" @default.
- W2007456476 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18729479" @default.
- W2007456476 hasPublicationYear "2008" @default.
- W2007456476 type Work @default.
- W2007456476 sameAs 2007456476 @default.
- W2007456476 citedByCount "26" @default.
- W2007456476 countsByYear W20074564762012 @default.
- W2007456476 countsByYear W20074564762013 @default.
- W2007456476 countsByYear W20074564762014 @default.
- W2007456476 countsByYear W20074564762015 @default.
- W2007456476 countsByYear W20074564762019 @default.
- W2007456476 countsByYear W20074564762020 @default.
- W2007456476 countsByYear W20074564762021 @default.
- W2007456476 countsByYear W20074564762022 @default.
- W2007456476 crossrefType "journal-article" @default.
- W2007456476 hasAuthorship W2007456476A5013647313 @default.
- W2007456476 hasAuthorship W2007456476A5019152554 @default.
- W2007456476 hasAuthorship W2007456476A5040190114 @default.
- W2007456476 hasConcept C117633835 @default.
- W2007456476 hasConcept C121332964 @default.
- W2007456476 hasConcept C147597530 @default.
- W2007456476 hasConcept C171999351 @default.
- W2007456476 hasConcept C181500209 @default.
- W2007456476 hasConcept C185544564 @default.
- W2007456476 hasConcept C185592680 @default.
- W2007456476 hasConcept C33062035 @default.
- W2007456476 hasConcept C71240020 @default.
- W2007456476 hasConcept C96350342 @default.
- W2007456476 hasConceptScore W2007456476C117633835 @default.
- W2007456476 hasConceptScore W2007456476C121332964 @default.
- W2007456476 hasConceptScore W2007456476C147597530 @default.
- W2007456476 hasConceptScore W2007456476C171999351 @default.
- W2007456476 hasConceptScore W2007456476C181500209 @default.
- W2007456476 hasConceptScore W2007456476C185544564 @default.
- W2007456476 hasConceptScore W2007456476C185592680 @default.