Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007464021> ?p ?o ?g. }
- W2007464021 endingPage "5139" @default.
- W2007464021 startingPage "5122" @default.
- W2007464021 abstract "Organic ligands are known to interfere with the polymerization of Fe(III), but the extent of interference has not been systematically studied as a function of structural ligand properties. This study examines how the number and position of phenol groups in hydroxybenzoic acids affect both ferrihydrite formation and its local (<5 Å) Fe coordination. To this end, acid Fe(III) nitrate solutions were neutralized up to pH 6.0 in the presence of 4-hydroxybenzoic acid (4HB), 2,4-dihydroxybenzoic acid (2,4DHB), and the hydroquinone 3,4-dihydroxybenzoic acid (3,4DHB). The initial molar ligand/Fe ratios ranged from 0 to 0.6. The precipitates were dialyzed, lyophilized, and subsequently studied by X-ray absorption spectroscopy and synchrotron X-ray diffraction. The solids contained up to 32 wt.% organic C (4HB ∼ 2,4DHB < 3,4DHB). Only precipitates formed in 3,4DHB solutions comprised considerable amounts of Fe(II) (Fe(II)/Fetot ≤ 6 mol%), implying the abiotic mineralization of the catechol-group bearing ligand during Fe(III) hydrolysis under oxic conditions. Hydroxybenzoic acids decreased ferrihydrite formation in the order 4HB ∼ 2,4DHB ≪ 3,4DHB, which documents that phenol group position rather than the number of phenol groups controls the ligand’s interaction with Fe(III). The coordination numbers of edge- and double corner-sharing Fe in the precipitates decreased by up to 100%. Linear combination fitting (LCF) of Fe K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra revealed that this decrease was due to increasing amounts of organic Fe(III) complexes in the precipitates. Although EXAFS derived coordination numbers of Fe in ferrihydrite remained constant within error, all organic ligands decreased the coherently scattering domain (CSD) size of ferrihydrite as indicated by synchrotron X-ray diffraction analysis (4HB < 2,4DHB ≪ 3,4DHB). With decreasing particle size of ferrihydrite its Fe(O,OH)6 octahedra became progressively distorted as evidenced by an increasing loss of centrosymmetry of the Fe sites. Pre-edge peak analysis of the Fe K-edge XANES spectra in conjunction with LCF results implied that ferrihydrite contains on an average 13 ± 3% tetrahedral Fe(III), which is in very good agreement with the revised single-phase structural model of ferrihydrite (Michel, F. M., Barron, V., Torrent, J., Morales, M. P. et al. (2010) Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proc. Natl. Acad. Sci. USA 107, 2787–2792). The results suggest that hydroxybenzoic acid moieties of natural organic matter (NOM) effectively suppress ferrihydrite precipitation as they kinetically control the availability of inorganic Fe(III) species for nucleation and/or polymerization reactions. As a consequence, NOM can trigger the formation of small ferrihydrite nanoparticles with increased structural strain. These factors may eventually enhance the biogeochemical reactivity of ferrihydrite formed in NOM-rich environments. This study highlights the role of hydroquinone structures of NOM for Fe complexation, polymerization, and redox speciation." @default.
- W2007464021 created "2016-06-24" @default.
- W2007464021 creator A5074043483 @default.
- W2007464021 date "2011-09-01" @default.
- W2007464021 modified "2023-10-02" @default.
- W2007464021 title "X-ray absorption spectroscopy study on the effect of hydroxybenzoic acids on the formation and structure of ferrihydrite" @default.
- W2007464021 cites W1584634305 @default.
- W2007464021 cites W1951468408 @default.
- W2007464021 cites W1967081261 @default.
- W2007464021 cites W1974626958 @default.
- W2007464021 cites W1974784769 @default.
- W2007464021 cites W1975991380 @default.
- W2007464021 cites W1977405389 @default.
- W2007464021 cites W1980054043 @default.
- W2007464021 cites W1980111634 @default.
- W2007464021 cites W1981878615 @default.
- W2007464021 cites W1983853645 @default.
- W2007464021 cites W1983874564 @default.
- W2007464021 cites W1993462388 @default.
- W2007464021 cites W1994211019 @default.
- W2007464021 cites W1995485797 @default.
- W2007464021 cites W1995977225 @default.
- W2007464021 cites W1997004166 @default.
- W2007464021 cites W2006367555 @default.
- W2007464021 cites W2006972547 @default.
- W2007464021 cites W2008851637 @default.
- W2007464021 cites W2011020318 @default.
- W2007464021 cites W2014350323 @default.
- W2007464021 cites W2014966142 @default.
- W2007464021 cites W2016249727 @default.
- W2007464021 cites W2018222553 @default.
- W2007464021 cites W2020399106 @default.
- W2007464021 cites W2021509525 @default.
- W2007464021 cites W2023083099 @default.
- W2007464021 cites W2030944561 @default.
- W2007464021 cites W2032906935 @default.
- W2007464021 cites W2034746437 @default.
- W2007464021 cites W2035987740 @default.
- W2007464021 cites W2048268824 @default.
- W2007464021 cites W2049381544 @default.
- W2007464021 cites W2051719218 @default.
- W2007464021 cites W2052447845 @default.
- W2007464021 cites W2060512604 @default.
- W2007464021 cites W2062880976 @default.
- W2007464021 cites W2070227796 @default.
- W2007464021 cites W2075774507 @default.
- W2007464021 cites W2078171437 @default.
- W2007464021 cites W2078342805 @default.
- W2007464021 cites W2079083371 @default.
- W2007464021 cites W2085304244 @default.
- W2007464021 cites W2091913250 @default.
- W2007464021 cites W2092658155 @default.
- W2007464021 cites W2095578669 @default.
- W2007464021 cites W2115333379 @default.
- W2007464021 cites W2120104062 @default.
- W2007464021 cites W2122697462 @default.
- W2007464021 cites W2123699567 @default.
- W2007464021 cites W2129126460 @default.
- W2007464021 cites W2130008472 @default.
- W2007464021 cites W2133031510 @default.
- W2007464021 cites W2133825649 @default.
- W2007464021 cites W2138101090 @default.
- W2007464021 cites W2145956196 @default.
- W2007464021 cites W2302669664 @default.
- W2007464021 cites W2339510751 @default.
- W2007464021 cites W2603943204 @default.
- W2007464021 cites W45925302 @default.
- W2007464021 doi "https://doi.org/10.1016/j.gca.2011.06.002" @default.
- W2007464021 hasPublicationYear "2011" @default.
- W2007464021 type Work @default.
- W2007464021 sameAs 2007464021 @default.
- W2007464021 citedByCount "95" @default.
- W2007464021 countsByYear W20074640212012 @default.
- W2007464021 countsByYear W20074640212013 @default.
- W2007464021 countsByYear W20074640212014 @default.
- W2007464021 countsByYear W20074640212015 @default.
- W2007464021 countsByYear W20074640212016 @default.
- W2007464021 countsByYear W20074640212017 @default.
- W2007464021 countsByYear W20074640212018 @default.
- W2007464021 countsByYear W20074640212019 @default.
- W2007464021 countsByYear W20074640212020 @default.
- W2007464021 countsByYear W20074640212021 @default.
- W2007464021 countsByYear W20074640212022 @default.
- W2007464021 countsByYear W20074640212023 @default.
- W2007464021 crossrefType "journal-article" @default.
- W2007464021 hasAuthorship W2007464021A5074043483 @default.
- W2007464021 hasConcept C107861141 @default.
- W2007464021 hasConcept C110715899 @default.
- W2007464021 hasConcept C116569031 @default.
- W2007464021 hasConcept C119824511 @default.
- W2007464021 hasConcept C121332964 @default.
- W2007464021 hasConcept C125287762 @default.
- W2007464021 hasConcept C13965031 @default.
- W2007464021 hasConcept C150394285 @default.
- W2007464021 hasConcept C159985019 @default.
- W2007464021 hasConcept C170493617 @default.
- W2007464021 hasConcept C178790620 @default.
- W2007464021 hasConcept C179104552 @default.