Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007474743> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2007474743 endingPage "310" @default.
- W2007474743 startingPage "287" @default.
- W2007474743 abstract "In this paper, a sequential orthogonal approach to the building and training of a single hidden layer fuzzy neural network is presented. Sequential learning artificial neural network model proposed by Zhang and Morris (Neural Networks 11 (1) (1998) 65) is modified to tackle fuzzy inputs and crisp outputs and a sequential learning artificial fuzzy neural network model is developed and used in this paper. This model can tackle the common problem encountered by conventional fuzzy back propagation neural network in the determination of the network structure in the number of hidden layers and the number of hidden neurons in each layer. Non-linear mapping between fuzzy input vectors and crisp output is performed. Left and right (LR) type representation is used to reduce the network complexity. A simple defuzzification process is proposed. The procedure starts with a single hidden neuron and sequentially increases in the number of hidden neurons until the model error is sufficiently small. The classical Gram–Schmidt orthogonalization method is used at each step to form a set of orthogonal bases for the space spanned by output vectors of the hidden neurons. In this approach it is possible to determine the necessary number of hidden neurons required. The fuzzy neural network architecture has been trained and tested to civil engineering problems such as determination of allowable stress limits for a beam subjected to lateral loads, earthquake damage and the evaluation of wind pressure predictions." @default.
- W2007474743 created "2016-06-24" @default.
- W2007474743 creator A5006862051 @default.
- W2007474743 creator A5057965371 @default.
- W2007474743 creator A5062593298 @default.
- W2007474743 date "2002-01-01" @default.
- W2007474743 modified "2023-09-26" @default.
- W2007474743 title "Sequential learning artificial fuzzy neural networks (SLAFNN) with single hidden layer" @default.
- W2007474743 cites W1573186872 @default.
- W2007474743 cites W1579249141 @default.
- W2007474743 cites W1975100741 @default.
- W2007474743 cites W2005971284 @default.
- W2007474743 cites W2056400612 @default.
- W2007474743 cites W2061065535 @default.
- W2007474743 cites W2155399784 @default.
- W2007474743 cites W2330022088 @default.
- W2007474743 cites W2912565176 @default.
- W2007474743 doi "https://doi.org/10.1016/s0925-2312(01)00609-9" @default.
- W2007474743 hasPublicationYear "2002" @default.
- W2007474743 type Work @default.
- W2007474743 sameAs 2007474743 @default.
- W2007474743 citedByCount "4" @default.
- W2007474743 countsByYear W20074747432014 @default.
- W2007474743 countsByYear W20074747432016 @default.
- W2007474743 crossrefType "journal-article" @default.
- W2007474743 hasAuthorship W2007474743A5006862051 @default.
- W2007474743 hasAuthorship W2007474743A5057965371 @default.
- W2007474743 hasAuthorship W2007474743A5062593298 @default.
- W2007474743 hasConcept C108583219 @default.
- W2007474743 hasConcept C11413529 @default.
- W2007474743 hasConcept C153180895 @default.
- W2007474743 hasConcept C154945302 @default.
- W2007474743 hasConcept C155032097 @default.
- W2007474743 hasConcept C170260401 @default.
- W2007474743 hasConcept C175202392 @default.
- W2007474743 hasConcept C1883856 @default.
- W2007474743 hasConcept C195975749 @default.
- W2007474743 hasConcept C29470771 @default.
- W2007474743 hasConcept C41008148 @default.
- W2007474743 hasConcept C42011625 @default.
- W2007474743 hasConcept C47559304 @default.
- W2007474743 hasConcept C50644808 @default.
- W2007474743 hasConcept C58166 @default.
- W2007474743 hasConceptScore W2007474743C108583219 @default.
- W2007474743 hasConceptScore W2007474743C11413529 @default.
- W2007474743 hasConceptScore W2007474743C153180895 @default.
- W2007474743 hasConceptScore W2007474743C154945302 @default.
- W2007474743 hasConceptScore W2007474743C155032097 @default.
- W2007474743 hasConceptScore W2007474743C170260401 @default.
- W2007474743 hasConceptScore W2007474743C175202392 @default.
- W2007474743 hasConceptScore W2007474743C1883856 @default.
- W2007474743 hasConceptScore W2007474743C195975749 @default.
- W2007474743 hasConceptScore W2007474743C29470771 @default.
- W2007474743 hasConceptScore W2007474743C41008148 @default.
- W2007474743 hasConceptScore W2007474743C42011625 @default.
- W2007474743 hasConceptScore W2007474743C47559304 @default.
- W2007474743 hasConceptScore W2007474743C50644808 @default.
- W2007474743 hasConceptScore W2007474743C58166 @default.
- W2007474743 hasIssue "1-4" @default.
- W2007474743 hasLocation W20074747431 @default.
- W2007474743 hasOpenAccess W2007474743 @default.
- W2007474743 hasPrimaryLocation W20074747431 @default.
- W2007474743 hasRelatedWork W1536166800 @default.
- W2007474743 hasRelatedWork W1967710160 @default.
- W2007474743 hasRelatedWork W1975773326 @default.
- W2007474743 hasRelatedWork W2061828243 @default.
- W2007474743 hasRelatedWork W2134826631 @default.
- W2007474743 hasRelatedWork W2154201233 @default.
- W2007474743 hasRelatedWork W2253916278 @default.
- W2007474743 hasRelatedWork W3156786002 @default.
- W2007474743 hasRelatedWork W74364172 @default.
- W2007474743 hasRelatedWork W1943881267 @default.
- W2007474743 hasVolume "42" @default.
- W2007474743 isParatext "false" @default.
- W2007474743 isRetracted "false" @default.
- W2007474743 magId "2007474743" @default.
- W2007474743 workType "article" @default.