Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007482107> ?p ?o ?g. }
- W2007482107 abstract "Abstract In general, the closure of the finite system of moment equations by the corresponding maximum entropy distribution function results in the symmetric conservative system of first-order partial differential equations for the Lagrange multipliers of the constrained Boltzmann entropy maximization problem. Then the transformation of dependent variables yields the system of conservation equations for the moments which is consistent with the additional conservation equation identified with the balance of entropy. The objective of this paper is to employ these facts for the analysis of the spectral Eddington factors obtained from the maximum entropy distribution functions. The supposition that the spectral Eddington factors should depend on the energy density and the heat flux only through the single variable representing the heat flux normalized in some way by the energy density predominates in the literature on the subject. Here, it is demonstrated that this is true only for classical Maxwell–Boltzmann radiation and, in this case, the well-known results of Minerbo are recovered. A similar single-variable dependence postulated by Cernohorsky and Bludman for fermionic radiation cannot be justified since it leads to the contradiction with the consistency conditions between the moment evolution equations and the entropy balance. For Bose–Einstein radiation, we rederive and analyze the results given in the literature for low-energy and high-energy limits. We also show that, except for those limiting cases, the Eddington factor for bosonic radiation cannot be represented as a function of a single normalized variable. In the present approach, the entropy function plays a crucial role in determining the system of evolution equations for the energy density and the heat flux. In this system, the flux of the heat flux, and hence the Eddington factor, is determined by the additional scalar potential uniquely related to the entropy function for each type of statistics. Since the Eddington factor cannot be expressed in terms of elementary functions, we propose to use the polynomial approximation. Namely, for Maxwell–Boltzmann, Fermi–Dirac, and Bose–Einstein statistics, we expand the entropy function in powers of the square of the heat flux and also calculate the corresponding power series expansion of the additional potential. By truncating the latter, we obtain the Eddington factor represented as the eighth-order polynomial in the heat flux with coefficients being the elementary functions of the energy density and the parameter which determines statistics. Finally, we analyze the behavior of the scalar Eddington factors in the limiting case when the normalized heat flux tends to one." @default.
- W2007482107 created "2016-06-24" @default.
- W2007482107 creator A5028674394 @default.
- W2007482107 creator A5043043260 @default.
- W2007482107 date "2011-10-01" @default.
- W2007482107 modified "2023-09-24" @default.
- W2007482107 title "Entropic derivation of the spectral Eddington factors" @default.
- W2007482107 cites W154295529 @default.
- W2007482107 cites W1563216928 @default.
- W2007482107 cites W1571871558 @default.
- W2007482107 cites W1590460147 @default.
- W2007482107 cites W1624830178 @default.
- W2007482107 cites W1637643457 @default.
- W2007482107 cites W1639176528 @default.
- W2007482107 cites W1969095327 @default.
- W2007482107 cites W1972358606 @default.
- W2007482107 cites W1975293331 @default.
- W2007482107 cites W1977473033 @default.
- W2007482107 cites W1977479712 @default.
- W2007482107 cites W1977807893 @default.
- W2007482107 cites W1983402014 @default.
- W2007482107 cites W1986769465 @default.
- W2007482107 cites W1999188088 @default.
- W2007482107 cites W2000773262 @default.
- W2007482107 cites W2001096969 @default.
- W2007482107 cites W2003210164 @default.
- W2007482107 cites W2008179816 @default.
- W2007482107 cites W2010328130 @default.
- W2007482107 cites W2012831195 @default.
- W2007482107 cites W2015847667 @default.
- W2007482107 cites W2017984976 @default.
- W2007482107 cites W203330715 @default.
- W2007482107 cites W2035709970 @default.
- W2007482107 cites W2037748067 @default.
- W2007482107 cites W2039274565 @default.
- W2007482107 cites W2049554407 @default.
- W2007482107 cites W2051247278 @default.
- W2007482107 cites W2060287793 @default.
- W2007482107 cites W2067172078 @default.
- W2007482107 cites W2067828523 @default.
- W2007482107 cites W2068810298 @default.
- W2007482107 cites W2072433035 @default.
- W2007482107 cites W2073809854 @default.
- W2007482107 cites W2083929201 @default.
- W2007482107 cites W2100509087 @default.
- W2007482107 cites W2109006349 @default.
- W2007482107 cites W2115800193 @default.
- W2007482107 cites W2137331932 @default.
- W2007482107 cites W2156694939 @default.
- W2007482107 cites W2159998136 @default.
- W2007482107 cites W2326045958 @default.
- W2007482107 cites W2475014003 @default.
- W2007482107 cites W2478860847 @default.
- W2007482107 cites W2492386554 @default.
- W2007482107 cites W2795641786 @default.
- W2007482107 cites W281315726 @default.
- W2007482107 cites W2913501537 @default.
- W2007482107 cites W3023224724 @default.
- W2007482107 cites W3175588274 @default.
- W2007482107 cites W3242376 @default.
- W2007482107 cites W42793890 @default.
- W2007482107 cites W69704351 @default.
- W2007482107 cites W2090067599 @default.
- W2007482107 doi "https://doi.org/10.1016/j.jqsrt.2011.06.011" @default.
- W2007482107 hasPublicationYear "2011" @default.
- W2007482107 type Work @default.
- W2007482107 sameAs 2007482107 @default.
- W2007482107 citedByCount "11" @default.
- W2007482107 countsByYear W20074821072012 @default.
- W2007482107 countsByYear W20074821072013 @default.
- W2007482107 countsByYear W20074821072014 @default.
- W2007482107 countsByYear W20074821072016 @default.
- W2007482107 countsByYear W20074821072017 @default.
- W2007482107 countsByYear W20074821072019 @default.
- W2007482107 countsByYear W20074821072020 @default.
- W2007482107 countsByYear W20074821072021 @default.
- W2007482107 crossrefType "journal-article" @default.
- W2007482107 hasAuthorship W2007482107A5028674394 @default.
- W2007482107 hasAuthorship W2007482107A5043043260 @default.
- W2007482107 hasConcept C105795698 @default.
- W2007482107 hasConcept C106301342 @default.
- W2007482107 hasConcept C121332964 @default.
- W2007482107 hasConcept C121864883 @default.
- W2007482107 hasConcept C127233936 @default.
- W2007482107 hasConcept C135694725 @default.
- W2007482107 hasConcept C33923547 @default.
- W2007482107 hasConcept C3445786 @default.
- W2007482107 hasConcept C35304006 @default.
- W2007482107 hasConcept C60507348 @default.
- W2007482107 hasConcept C62520636 @default.
- W2007482107 hasConcept C9679016 @default.
- W2007482107 hasConceptScore W2007482107C105795698 @default.
- W2007482107 hasConceptScore W2007482107C106301342 @default.
- W2007482107 hasConceptScore W2007482107C121332964 @default.
- W2007482107 hasConceptScore W2007482107C121864883 @default.
- W2007482107 hasConceptScore W2007482107C127233936 @default.
- W2007482107 hasConceptScore W2007482107C135694725 @default.
- W2007482107 hasConceptScore W2007482107C33923547 @default.
- W2007482107 hasConceptScore W2007482107C3445786 @default.
- W2007482107 hasConceptScore W2007482107C35304006 @default.