Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007641014> ?p ?o ?g. }
- W2007641014 endingPage "140" @default.
- W2007641014 startingPage "133" @default.
- W2007641014 abstract "High resolution peripheral quantitative computed tomography (HR-pQCT) permits the non-invasive assessment of cortical and trabecular bone density, geometry, and microarchitecture. Although researchers have developed various post-processing algorithms to quantify HR-pQCT image properties, few of these techniques capture image features beyond global structure-based metrics. While 3D-texture analysis is a key approach in computer vision, it has been utilized only infrequently in HR-pQCT research. Motivated by high isotropic spatial resolution and the information density provided by HR-pQCT scans, we have developed and evaluated a post-processing algorithm that quantifies microarchitecture characteristics via texture features in HR-pQCT scans. During a training phase in which clustering was applied to texture features extracted from each voxel of trabecular bone, three distinct clusters, or trabecular microarchitecture classes (TMACs) were identified. These TMACs represent trabecular bone regions with common texture characteristics. The TMACs were then used to automatically segment the voxels of new data into three regions corresponding to the trained cluster features. Regional trabecular bone texture was described by the histogram of relative trabecular bone volume covered by each cluster. We evaluated the intra-scanner and inter-scanner reproducibility by assessing the precision errors (PE), intra class correlation coefficients (ICC) and Dice coefficients (DC) of the method on 14 ultradistal radius samples scanned on two HR-pQCT systems. DC showed good reproducibility in intra-scanner set-up with a mean of 0.870±0.027 (no unit). Even in the inter-scanner set-up the ICC showed high reproducibility, ranging from 0.814 to 0.964. In a preliminary clinical test application, the TMAC histograms appear to be a good indicator, when differentiating between postmenopausal women with (n=18) and without (n=18) prevalent fragility fractures. In conclusion, we could demonstrate that 3D-texture analysis and feature clustering seems to be a promising new HR-pQCT post-processing tool with good reproducibility, even between two different scanners." @default.
- W2007641014 created "2016-06-24" @default.
- W2007641014 creator A5009274955 @default.
- W2007641014 creator A5028809808 @default.
- W2007641014 creator A5043462798 @default.
- W2007641014 creator A5045884626 @default.
- W2007641014 creator A5049544471 @default.
- W2007641014 creator A5060814361 @default.
- W2007641014 creator A5069893656 @default.
- W2007641014 creator A5075674884 @default.
- W2007641014 creator A5081821540 @default.
- W2007641014 creator A5090133386 @default.
- W2007641014 date "2013-05-01" @default.
- W2007641014 modified "2023-09-22" @default.
- W2007641014 title "Computational identification and quantification of trabecular microarchitecture classes by 3-D texture analysis-based clustering" @default.
- W2007641014 cites W141280092 @default.
- W2007641014 cites W1702563725 @default.
- W2007641014 cites W175660244 @default.
- W2007641014 cites W1867102173 @default.
- W2007641014 cites W1963864516 @default.
- W2007641014 cites W1964983194 @default.
- W2007641014 cites W1972192940 @default.
- W2007641014 cites W1976854024 @default.
- W2007641014 cites W1978258606 @default.
- W2007641014 cites W1980173357 @default.
- W2007641014 cites W1983211249 @default.
- W2007641014 cites W1983843418 @default.
- W2007641014 cites W1993457878 @default.
- W2007641014 cites W1993572903 @default.
- W2007641014 cites W1999889262 @default.
- W2007641014 cites W2005607247 @default.
- W2007641014 cites W2011416167 @default.
- W2007641014 cites W2014973716 @default.
- W2007641014 cites W2014999512 @default.
- W2007641014 cites W2017166683 @default.
- W2007641014 cites W2018038558 @default.
- W2007641014 cites W2018189647 @default.
- W2007641014 cites W2021542350 @default.
- W2007641014 cites W2021693450 @default.
- W2007641014 cites W2032336008 @default.
- W2007641014 cites W2044128912 @default.
- W2007641014 cites W2044178924 @default.
- W2007641014 cites W2044465660 @default.
- W2007641014 cites W2049945671 @default.
- W2007641014 cites W2050592024 @default.
- W2007641014 cites W2054689187 @default.
- W2007641014 cites W2055701945 @default.
- W2007641014 cites W2055830678 @default.
- W2007641014 cites W2059471177 @default.
- W2007641014 cites W2066056548 @default.
- W2007641014 cites W2069370255 @default.
- W2007641014 cites W2075361166 @default.
- W2007641014 cites W2083977140 @default.
- W2007641014 cites W2085555827 @default.
- W2007641014 cites W2096320880 @default.
- W2007641014 cites W2105510043 @default.
- W2007641014 cites W2112779928 @default.
- W2007641014 cites W2117369607 @default.
- W2007641014 cites W2129534965 @default.
- W2007641014 cites W2130847494 @default.
- W2007641014 cites W2139586263 @default.
- W2007641014 cites W2140139548 @default.
- W2007641014 cites W2140477164 @default.
- W2007641014 cites W2149879251 @default.
- W2007641014 cites W2154433919 @default.
- W2007641014 cites W2154918057 @default.
- W2007641014 cites W2160593291 @default.
- W2007641014 cites W2167036988 @default.
- W2007641014 cites W2289597354 @default.
- W2007641014 doi "https://doi.org/10.1016/j.bone.2012.12.047" @default.
- W2007641014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23313281" @default.
- W2007641014 hasPublicationYear "2013" @default.
- W2007641014 type Work @default.
- W2007641014 sameAs 2007641014 @default.
- W2007641014 citedByCount "25" @default.
- W2007641014 countsByYear W20076410142013 @default.
- W2007641014 countsByYear W20076410142014 @default.
- W2007641014 countsByYear W20076410142015 @default.
- W2007641014 countsByYear W20076410142016 @default.
- W2007641014 countsByYear W20076410142017 @default.
- W2007641014 countsByYear W20076410142018 @default.
- W2007641014 countsByYear W20076410142019 @default.
- W2007641014 countsByYear W20076410142020 @default.
- W2007641014 countsByYear W20076410142021 @default.
- W2007641014 countsByYear W20076410142022 @default.
- W2007641014 countsByYear W20076410142023 @default.
- W2007641014 crossrefType "journal-article" @default.
- W2007641014 hasAuthorship W2007641014A5009274955 @default.
- W2007641014 hasAuthorship W2007641014A5028809808 @default.
- W2007641014 hasAuthorship W2007641014A5043462798 @default.
- W2007641014 hasAuthorship W2007641014A5045884626 @default.
- W2007641014 hasAuthorship W2007641014A5049544471 @default.
- W2007641014 hasAuthorship W2007641014A5060814361 @default.
- W2007641014 hasAuthorship W2007641014A5069893656 @default.
- W2007641014 hasAuthorship W2007641014A5075674884 @default.
- W2007641014 hasAuthorship W2007641014A5081821540 @default.
- W2007641014 hasAuthorship W2007641014A5090133386 @default.
- W2007641014 hasConcept C105795698 @default.