Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007682002> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2007682002 abstract "The ABI on GOES-R will provide imagery in two narrow visible bands (red, blue), which is not sufficient to directly produce color (RGB) images. In this paper we present a method to estimate green band from a simulated ABI multi-spectral image. To address this problem we propose to use statistical learning to train and update functions that estimate the value for the 550 nm green channel using the values that will be present in other bands of the ABI as input parameters. One challenge is that in order to exploit as many bands as possible, we cannot use straightforward non-parametric methods such as a look-up tables because the number of entries in look-up tables grows exponentially with the number of input parameters. Other simple approaches such as simple linear regression on the multi-spectral input parameters will not produce satisfactory results due to the underlying non-linearity of the data. For instance, the relationship among different spectra for cloud footprints will be radically different from that of a desert surface. The approach we propose is to use piecewise multi-linear regression on the multi-spectral input to train the green channel predictor. Our predictor is built from the combination of a classifier followed by a multi-linear function. The classifier assigns each pixel to a class based on the array of values from the simulated (or proxy) ABI bands at that pixel. To each class is associated a set of coefficients for a multi-linear predictor for 550 nm green channel to be predicted. Thus, the parameters of the predictor consist of parameters of the classifier, as well as coefficients defining the approximating hyperplane for each class. To determine these classifiers we will use methods based on K-means clustering, as well as multi-variable piecewise linear approximation." @default.
- W2007682002 created "2016-06-24" @default.
- W2007682002 creator A5024032759 @default.
- W2007682002 creator A5048151159 @default.
- W2007682002 creator A5055442034 @default.
- W2007682002 creator A5058347464 @default.
- W2007682002 creator A5077987988 @default.
- W2007682002 creator A5082139311 @default.
- W2007682002 date "2011-09-08" @default.
- W2007682002 modified "2023-09-27" @default.
- W2007682002 title "Virtual green band for GOES-R" @default.
- W2007682002 cites W2008556872 @default.
- W2007682002 cites W2051973931 @default.
- W2007682002 cites W2083585005 @default.
- W2007682002 cites W2151730289 @default.
- W2007682002 doi "https://doi.org/10.1117/12.893660" @default.
- W2007682002 hasPublicationYear "2011" @default.
- W2007682002 type Work @default.
- W2007682002 sameAs 2007682002 @default.
- W2007682002 citedByCount "4" @default.
- W2007682002 countsByYear W20076820022016 @default.
- W2007682002 countsByYear W20076820022017 @default.
- W2007682002 countsByYear W20076820022019 @default.
- W2007682002 countsByYear W20076820022021 @default.
- W2007682002 crossrefType "proceedings-article" @default.
- W2007682002 hasAuthorship W2007682002A5024032759 @default.
- W2007682002 hasAuthorship W2007682002A5048151159 @default.
- W2007682002 hasAuthorship W2007682002A5055442034 @default.
- W2007682002 hasAuthorship W2007682002A5058347464 @default.
- W2007682002 hasAuthorship W2007682002A5077987988 @default.
- W2007682002 hasAuthorship W2007682002A5082139311 @default.
- W2007682002 hasConcept C11413529 @default.
- W2007682002 hasConcept C114700698 @default.
- W2007682002 hasConcept C121332964 @default.
- W2007682002 hasConcept C127162648 @default.
- W2007682002 hasConcept C127313418 @default.
- W2007682002 hasConcept C153180895 @default.
- W2007682002 hasConcept C154945302 @default.
- W2007682002 hasConcept C160633673 @default.
- W2007682002 hasConcept C17095337 @default.
- W2007682002 hasConcept C2524010 @default.
- W2007682002 hasConcept C33923547 @default.
- W2007682002 hasConcept C41008148 @default.
- W2007682002 hasConcept C62520636 @default.
- W2007682002 hasConcept C62649853 @default.
- W2007682002 hasConcept C76155785 @default.
- W2007682002 hasConcept C77170095 @default.
- W2007682002 hasConcept C82990744 @default.
- W2007682002 hasConceptScore W2007682002C11413529 @default.
- W2007682002 hasConceptScore W2007682002C114700698 @default.
- W2007682002 hasConceptScore W2007682002C121332964 @default.
- W2007682002 hasConceptScore W2007682002C127162648 @default.
- W2007682002 hasConceptScore W2007682002C127313418 @default.
- W2007682002 hasConceptScore W2007682002C153180895 @default.
- W2007682002 hasConceptScore W2007682002C154945302 @default.
- W2007682002 hasConceptScore W2007682002C160633673 @default.
- W2007682002 hasConceptScore W2007682002C17095337 @default.
- W2007682002 hasConceptScore W2007682002C2524010 @default.
- W2007682002 hasConceptScore W2007682002C33923547 @default.
- W2007682002 hasConceptScore W2007682002C41008148 @default.
- W2007682002 hasConceptScore W2007682002C62520636 @default.
- W2007682002 hasConceptScore W2007682002C62649853 @default.
- W2007682002 hasConceptScore W2007682002C76155785 @default.
- W2007682002 hasConceptScore W2007682002C77170095 @default.
- W2007682002 hasConceptScore W2007682002C82990744 @default.
- W2007682002 hasLocation W20076820021 @default.
- W2007682002 hasOpenAccess W2007682002 @default.
- W2007682002 hasPrimaryLocation W20076820021 @default.
- W2007682002 hasRelatedWork W2136485282 @default.
- W2007682002 hasRelatedWork W2338579811 @default.
- W2007682002 hasRelatedWork W2546871836 @default.
- W2007682002 hasRelatedWork W2547748020 @default.
- W2007682002 hasRelatedWork W2918815323 @default.
- W2007682002 hasRelatedWork W2963805028 @default.
- W2007682002 hasRelatedWork W3034655717 @default.
- W2007682002 hasRelatedWork W3160284275 @default.
- W2007682002 hasRelatedWork W4230156422 @default.
- W2007682002 hasRelatedWork W4301343772 @default.
- W2007682002 isParatext "false" @default.
- W2007682002 isRetracted "false" @default.
- W2007682002 magId "2007682002" @default.
- W2007682002 workType "article" @default.