Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007757881> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2007757881 endingPage "8" @default.
- W2007757881 startingPage "1" @default.
- W2007757881 abstract "Each volcano has its own unique seismic activity. The aim of this work is to construct a system able to classify seismic signals for the Villarrica volcano, one of the most active volcanoes in South America. Since seismic signals are the result of particular processes inside the volcano's structure, they can be used to forecast volcanic activity. This paper describes the different kinds of seismic signals recorded at the Villarrica volcano and their significance. Three kind of signals were considered as most representative of this volcano's activity: the long-period, the tremor, and the energetic tremor signals. A classifier is implemented to read the seismic registers at 30-second intervals, extract the most relevant features of each interval, and classify them into one of the three kinds of signals considered as most representative of this particular volcano. To do so, 1033 different kinds of 30-s signals were extracted and classified by a human expert. A feature extraction process was applied to obtain the main characteristics of each of them. This process was developed using criteria which have been shown by others to effectively classify seismic signals, based on the experience of a human expert. The classifier was implemented with a Multi-Layer Perceptron (MLP) artificial neural network whose architecture and training process were optimized by means of a genetic algorithm. This technique searched for the most adequate MLP configuration to improve the classification performance, optimizing the number of hidden neurons, the transfer functions of the neurons, and the training algorithm. The optimization process also performed a feature selection to reduce the number of signal features, optimizing the number of network inputs. The results show that the optimized classifier reaches more than 93% exactitude. identifying the signals of each kind. The amplitude of the signals is the most important feature for its classification, followed by its frequency content. The described methodology can be used to classify more seismic signals to improve the study of the activity of this volcano or to extend the study to other active volcanoes of the region." @default.
- W2007757881 created "2016-06-24" @default.
- W2007757881 creator A5022892143 @default.
- W2007757881 creator A5032451602 @default.
- W2007757881 creator A5072787997 @default.
- W2007757881 creator A5076043473 @default.
- W2007757881 creator A5080708169 @default.
- W2007757881 date "2009-02-01" @default.
- W2007757881 modified "2023-10-09" @default.
- W2007757881 title "Classification of seismic signals at Villarrica volcano (Chile) using neural networks and genetic algorithms" @default.
- W2007757881 cites W1984947879 @default.
- W2007757881 cites W2012150824 @default.
- W2007757881 cites W2012397486 @default.
- W2007757881 cites W2013450558 @default.
- W2007757881 cites W2028089975 @default.
- W2007757881 cites W2039862561 @default.
- W2007757881 cites W2054781915 @default.
- W2007757881 cites W2098085861 @default.
- W2007757881 cites W2129323784 @default.
- W2007757881 cites W2131380685 @default.
- W2007757881 cites W2164777277 @default.
- W2007757881 doi "https://doi.org/10.1016/j.jvolgeores.2008.12.002" @default.
- W2007757881 hasPublicationYear "2009" @default.
- W2007757881 type Work @default.
- W2007757881 sameAs 2007757881 @default.
- W2007757881 citedByCount "80" @default.
- W2007757881 countsByYear W20077578812012 @default.
- W2007757881 countsByYear W20077578812013 @default.
- W2007757881 countsByYear W20077578812014 @default.
- W2007757881 countsByYear W20077578812015 @default.
- W2007757881 countsByYear W20077578812016 @default.
- W2007757881 countsByYear W20077578812017 @default.
- W2007757881 countsByYear W20077578812018 @default.
- W2007757881 countsByYear W20077578812019 @default.
- W2007757881 countsByYear W20077578812020 @default.
- W2007757881 countsByYear W20077578812021 @default.
- W2007757881 countsByYear W20077578812022 @default.
- W2007757881 countsByYear W20077578812023 @default.
- W2007757881 crossrefType "journal-article" @default.
- W2007757881 hasAuthorship W2007757881A5022892143 @default.
- W2007757881 hasAuthorship W2007757881A5032451602 @default.
- W2007757881 hasAuthorship W2007757881A5072787997 @default.
- W2007757881 hasAuthorship W2007757881A5076043473 @default.
- W2007757881 hasAuthorship W2007757881A5080708169 @default.
- W2007757881 hasConcept C11413529 @default.
- W2007757881 hasConcept C119857082 @default.
- W2007757881 hasConcept C120806208 @default.
- W2007757881 hasConcept C127313418 @default.
- W2007757881 hasConcept C153180895 @default.
- W2007757881 hasConcept C154945302 @default.
- W2007757881 hasConcept C165205528 @default.
- W2007757881 hasConcept C41008148 @default.
- W2007757881 hasConcept C50644808 @default.
- W2007757881 hasConcept C60908668 @default.
- W2007757881 hasConcept C95623464 @default.
- W2007757881 hasConceptScore W2007757881C11413529 @default.
- W2007757881 hasConceptScore W2007757881C119857082 @default.
- W2007757881 hasConceptScore W2007757881C120806208 @default.
- W2007757881 hasConceptScore W2007757881C127313418 @default.
- W2007757881 hasConceptScore W2007757881C153180895 @default.
- W2007757881 hasConceptScore W2007757881C154945302 @default.
- W2007757881 hasConceptScore W2007757881C165205528 @default.
- W2007757881 hasConceptScore W2007757881C41008148 @default.
- W2007757881 hasConceptScore W2007757881C50644808 @default.
- W2007757881 hasConceptScore W2007757881C60908668 @default.
- W2007757881 hasConceptScore W2007757881C95623464 @default.
- W2007757881 hasIssue "1" @default.
- W2007757881 hasLocation W20077578811 @default.
- W2007757881 hasOpenAccess W2007757881 @default.
- W2007757881 hasPrimaryLocation W20077578811 @default.
- W2007757881 hasRelatedWork W1501213224 @default.
- W2007757881 hasRelatedWork W2167582322 @default.
- W2007757881 hasRelatedWork W2556319748 @default.
- W2007757881 hasRelatedWork W2563096758 @default.
- W2007757881 hasRelatedWork W2742991909 @default.
- W2007757881 hasRelatedWork W2972035100 @default.
- W2007757881 hasRelatedWork W4245248941 @default.
- W2007757881 hasRelatedWork W4386053843 @default.
- W2007757881 hasRelatedWork W4387118159 @default.
- W2007757881 hasRelatedWork W3158004940 @default.
- W2007757881 hasVolume "180" @default.
- W2007757881 isParatext "false" @default.
- W2007757881 isRetracted "false" @default.
- W2007757881 magId "2007757881" @default.
- W2007757881 workType "article" @default.