Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007784512> ?p ?o ?g. }
- W2007784512 endingPage "1203" @default.
- W2007784512 startingPage "1187" @default.
- W2007784512 abstract "One purpose of this paper is to point out that so-called intermolecular resonance transfer, intermolecular nonresonance transfer, and intramolecular electronic relaxation in solid media are simply all special cases of radiationless transitions between nonstationary states of the entire system of molecules plus environment. Intermolecular resonance transfer is also a special case of the pure crystal exciton problem. The theoretical results from a previous paper are applied to radiationless transitions in π-electron systems, and the importance of the Franck—Condon factors is emphasized. One role which the vibrational factors play in these processes is illustrated by the large isotope effects which can arise when the radiationless transition converts a large amount of electronic energy into vibrational energy of the system. Quantitative calculations are made of the radiationless transition probability for 1B2u→3E1u(S1→T2) and 1B2u→3B1u(S1→T1) ``intersystem crossing'' in C6H6. It is further shown that the 3B1u→1A1g(T1→S0) and 1B2u→1A1g(S1→S0) processes and other similar processes are slow because of the small vibrational factors which accompany the large energy gap between initial and final electronic states. Calculations cannot rule out the relative importance of the S1→S0 radiationless transition compared with fluorescence and singlet—triplet nonradiative processes. An empirical method by which the Franck—Condon factors may be ascertained from the electronic-energy gaps in π-electron molecules is presented, and the results are used to estimate radiationless transition probabilities for a number of systems. The enhancement of multiplicity forbidden radiationless transitions by a heavy-atom environment is treated, and, in the case where the environment is a solid rare gas, a third-order mechanism accounts for the observed effect. Temperature effects and other kinds of environmental effects upon nonradiative transitions are also dealt with. It is shown that the use of high-energy excitation may increase, but never decrease, QP/QF, the relative quantum yields of phosphorescence to fluorescence. Radiationless transitions for the interesting case of azulene and the enhancement by a heavy-atom environment of the triplet—triplet emission spectrum of this molecule are discussed. Many needed experiments are suggested throughout the paper." @default.
- W2007784512 created "2016-06-24" @default.
- W2007784512 creator A5010174277 @default.
- W2007784512 creator A5056906928 @default.
- W2007784512 date "1963-03-01" @default.
- W2007784512 modified "2023-10-16" @default.
- W2007784512 title "Electronic Excitation Transfer and Relaxation" @default.
- W2007784512 cites W1515595101 @default.
- W2007784512 cites W1520822480 @default.
- W2007784512 cites W1539578441 @default.
- W2007784512 cites W1968890585 @default.
- W2007784512 cites W1977956463 @default.
- W2007784512 cites W1989804566 @default.
- W2007784512 cites W1993190139 @default.
- W2007784512 cites W2003047210 @default.
- W2007784512 cites W2004705230 @default.
- W2007784512 cites W2009838780 @default.
- W2007784512 cites W2013260076 @default.
- W2007784512 cites W2019687938 @default.
- W2007784512 cites W2022003568 @default.
- W2007784512 cites W2023957325 @default.
- W2007784512 cites W2030577927 @default.
- W2007784512 cites W2033767999 @default.
- W2007784512 cites W2035579953 @default.
- W2007784512 cites W2036397233 @default.
- W2007784512 cites W2041554183 @default.
- W2007784512 cites W2041863185 @default.
- W2007784512 cites W2049826774 @default.
- W2007784512 cites W2049995445 @default.
- W2007784512 cites W2055110196 @default.
- W2007784512 cites W2056415119 @default.
- W2007784512 cites W2059544796 @default.
- W2007784512 cites W2060015442 @default.
- W2007784512 cites W2081527666 @default.
- W2007784512 cites W2083730521 @default.
- W2007784512 cites W2085291511 @default.
- W2007784512 cites W2087039044 @default.
- W2007784512 cites W2090412628 @default.
- W2007784512 cites W2093810900 @default.
- W2007784512 cites W2121558616 @default.
- W2007784512 cites W2142529162 @default.
- W2007784512 cites W2167373328 @default.
- W2007784512 cites W2169936405 @default.
- W2007784512 cites W2328836855 @default.
- W2007784512 cites W2892227420 @default.
- W2007784512 cites W4230833950 @default.
- W2007784512 doi "https://doi.org/10.1063/1.1733823" @default.
- W2007784512 hasPublicationYear "1963" @default.
- W2007784512 type Work @default.
- W2007784512 sameAs 2007784512 @default.
- W2007784512 citedByCount "644" @default.
- W2007784512 countsByYear W20077845122012 @default.
- W2007784512 countsByYear W20077845122013 @default.
- W2007784512 countsByYear W20077845122014 @default.
- W2007784512 countsByYear W20077845122015 @default.
- W2007784512 countsByYear W20077845122016 @default.
- W2007784512 countsByYear W20077845122017 @default.
- W2007784512 countsByYear W20077845122018 @default.
- W2007784512 countsByYear W20077845122019 @default.
- W2007784512 countsByYear W20077845122020 @default.
- W2007784512 countsByYear W20077845122021 @default.
- W2007784512 countsByYear W20077845122022 @default.
- W2007784512 countsByYear W20077845122023 @default.
- W2007784512 crossrefType "journal-article" @default.
- W2007784512 hasAuthorship W2007784512A5010174277 @default.
- W2007784512 hasAuthorship W2007784512A5056906928 @default.
- W2007784512 hasConcept C121332964 @default.
- W2007784512 hasConcept C123669783 @default.
- W2007784512 hasConcept C139210041 @default.
- W2007784512 hasConcept C147789679 @default.
- W2007784512 hasConcept C15744967 @default.
- W2007784512 hasConcept C166950319 @default.
- W2007784512 hasConcept C17729963 @default.
- W2007784512 hasConcept C178790620 @default.
- W2007784512 hasConcept C181500209 @default.
- W2007784512 hasConcept C184779094 @default.
- W2007784512 hasConcept C185592680 @default.
- W2007784512 hasConcept C26873012 @default.
- W2007784512 hasConcept C2776029896 @default.
- W2007784512 hasConcept C32909587 @default.
- W2007784512 hasConcept C33062035 @default.
- W2007784512 hasConcept C62520636 @default.
- W2007784512 hasConcept C71240020 @default.
- W2007784512 hasConcept C73978554 @default.
- W2007784512 hasConcept C75079739 @default.
- W2007784512 hasConcept C77805123 @default.
- W2007784512 hasConcept C83581075 @default.
- W2007784512 hasConcept C84662259 @default.
- W2007784512 hasConceptScore W2007784512C121332964 @default.
- W2007784512 hasConceptScore W2007784512C123669783 @default.
- W2007784512 hasConceptScore W2007784512C139210041 @default.
- W2007784512 hasConceptScore W2007784512C147789679 @default.
- W2007784512 hasConceptScore W2007784512C15744967 @default.
- W2007784512 hasConceptScore W2007784512C166950319 @default.
- W2007784512 hasConceptScore W2007784512C17729963 @default.
- W2007784512 hasConceptScore W2007784512C178790620 @default.
- W2007784512 hasConceptScore W2007784512C181500209 @default.
- W2007784512 hasConceptScore W2007784512C184779094 @default.