Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007889100> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2007889100 endingPage "194" @default.
- W2007889100 startingPage "175" @default.
- W2007889100 abstract "We study inequalities in harmonic analysis in the context of non-commutative non-compact locally compact groups. Our main result is the determination of the best constant in the Hausdorff-Young inequality for Heisenberg groups. We also obtain the somewhat surprising fact that the resulting sharp inequality does not admit any extremal functions. These results are obtained after a detailed study of the operators which occur in the Fourier decomposition of the regular representation of the Heisenberg groups. These are called Weyl operators and are of independent interest. We also obtain bounds for the best constants in the Hausdorff-Young inequality and in Young's inequality on semi-direct product groups, including non-unimodular groups. In particular, for real nilpotent groups of dimension n those best constants are shown to be dominated by the corresponding best constants for IR n. Although some of our preliminary lemmas are valid for all values ofp~(1, 2) the methods we use for our main results require that p belong to the sequence 4/3, 6/5, 8/7 ..... i.e. that p', the conjugate index, be an even integer. The contents of this paper are as follows. In Section 1 we discuss Weyl operators and determine, for p' even, the best constant in a Hausdorff-Young type inequality (Theorem 1). We also show the non-existence of extremal functions for this inequality. In Section 2 we prove some general results for locally compact groups which includes a form of Young's inequality for convolution appropriate for non-unimodular groups. This is applied to arbitrary semi-direct products. Then using a duality argument which relates the inequalities of Young and of Hausdorff-Young we obtain bounds for the Hausdorff-Young inequality (Theorem 2) on unimodular semi-direct product groups (for p' even). An interesting consequence of these results is that for a connected simply connected real nilpotent Lie group of dimension n, the best constants in the inequalities of Young and Hausdorff-Young are dominated by the corresponding best constants for IR n. In Section 3 we show (Theorem 3), using the theory of Weyl operators developed" @default.
- W2007889100 created "2016-06-24" @default.
- W2007889100 creator A5050442523 @default.
- W2007889100 creator A5062840245 @default.
- W2007889100 date "1978-06-01" @default.
- W2007889100 modified "2023-10-15" @default.
- W2007889100 title "Sharp inequalities for Weyl operators and Heisenberg groups" @default.
- W2007889100 cites W1214544074 @default.
- W2007889100 cites W1968500955 @default.
- W2007889100 cites W1993000235 @default.
- W2007889100 cites W2012285865 @default.
- W2007889100 cites W2094654291 @default.
- W2007889100 cites W2169340277 @default.
- W2007889100 cites W2321814098 @default.
- W2007889100 cites W2597213247 @default.
- W2007889100 cites W4211258748 @default.
- W2007889100 doi "https://doi.org/10.1007/bf01405012" @default.
- W2007889100 hasPublicationYear "1978" @default.
- W2007889100 type Work @default.
- W2007889100 sameAs 2007889100 @default.
- W2007889100 citedByCount "24" @default.
- W2007889100 countsByYear W20078891002016 @default.
- W2007889100 countsByYear W20078891002017 @default.
- W2007889100 countsByYear W20078891002018 @default.
- W2007889100 countsByYear W20078891002019 @default.
- W2007889100 countsByYear W20078891002020 @default.
- W2007889100 countsByYear W20078891002021 @default.
- W2007889100 countsByYear W20078891002022 @default.
- W2007889100 countsByYear W20078891002023 @default.
- W2007889100 crossrefType "journal-article" @default.
- W2007889100 hasAuthorship W2007889100A5050442523 @default.
- W2007889100 hasAuthorship W2007889100A5062840245 @default.
- W2007889100 hasBestOaLocation W20078891002 @default.
- W2007889100 hasConcept C127519595 @default.
- W2007889100 hasConcept C134306372 @default.
- W2007889100 hasConcept C136119220 @default.
- W2007889100 hasConcept C202444582 @default.
- W2007889100 hasConcept C3020036199 @default.
- W2007889100 hasConcept C33923547 @default.
- W2007889100 hasConcept C45555294 @default.
- W2007889100 hasConceptScore W2007889100C127519595 @default.
- W2007889100 hasConceptScore W2007889100C134306372 @default.
- W2007889100 hasConceptScore W2007889100C136119220 @default.
- W2007889100 hasConceptScore W2007889100C202444582 @default.
- W2007889100 hasConceptScore W2007889100C3020036199 @default.
- W2007889100 hasConceptScore W2007889100C33923547 @default.
- W2007889100 hasConceptScore W2007889100C45555294 @default.
- W2007889100 hasIssue "2" @default.
- W2007889100 hasLocation W20078891001 @default.
- W2007889100 hasLocation W20078891002 @default.
- W2007889100 hasOpenAccess W2007889100 @default.
- W2007889100 hasPrimaryLocation W20078891001 @default.
- W2007889100 hasRelatedWork W1809775403 @default.
- W2007889100 hasRelatedWork W1964016061 @default.
- W2007889100 hasRelatedWork W2033375756 @default.
- W2007889100 hasRelatedWork W2063979501 @default.
- W2007889100 hasRelatedWork W2087968352 @default.
- W2007889100 hasRelatedWork W2093123991 @default.
- W2007889100 hasRelatedWork W2122579609 @default.
- W2007889100 hasRelatedWork W2340243119 @default.
- W2007889100 hasRelatedWork W2353153612 @default.
- W2007889100 hasRelatedWork W4297812728 @default.
- W2007889100 hasVolume "235" @default.
- W2007889100 isParatext "false" @default.
- W2007889100 isRetracted "false" @default.
- W2007889100 magId "2007889100" @default.
- W2007889100 workType "article" @default.