Matches in SemOpenAlex for { <https://semopenalex.org/work/W2007951540> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2007951540 endingPage "239" @default.
- W2007951540 startingPage "227" @default.
- W2007951540 abstract "Many biomedical applications, such as the design of customized orthopaedic implants, require accurate mathematical models of bone geometry. The surface geometry is often generated by fitting closed parametric curves, or contours, to the edge points extracted from a sequence of evenly spaced planar images acquired using computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound imaging. The Bernstein basis function (BBF) network described in this paper is a novel neural network approach to performing functional approximation tasks such as curve and surface fitting. In essence, the BBF architecture is a two-layer basis function network that performs a weighted summation of nonlinear Bernstein polynomials. The weight values generated during network training are equivalent to the control points needed to create a smooth closed Bézier curve in a variety of commercially available computer-aided design software. Modifying the number of basis neurons in the architecture is equivalent to changing the degree of the Bernstein polynomials. An increase in the number of neurons will improve the curve fit, however, too many neurons will diminish the network's ability to generate a smooth approximation of the cross-sectional boundary data. Additional constraints are imposed on the learning algorithm in order to ensure positional and tangential continuity for the closed curve. A simulation study and real world experiment are presented to show the effectiveness of this functional approximation method for reverse engineering bone structures from serial medical imagery." @default.
- W2007951540 created "2016-06-24" @default.
- W2007951540 creator A5018952300 @default.
- W2007951540 creator A5063250962 @default.
- W2007951540 date "2001-07-01" @default.
- W2007951540 modified "2023-10-12" @default.
- W2007951540 title "Adaptive reconstruction of bone geometry from serial cross-sections" @default.
- W2007951540 cites W1973476885 @default.
- W2007951540 cites W1976617228 @default.
- W2007951540 cites W1981267681 @default.
- W2007951540 cites W1984487268 @default.
- W2007951540 cites W2021002529 @default.
- W2007951540 cites W2030503807 @default.
- W2007951540 cites W2047850576 @default.
- W2007951540 cites W2066340862 @default.
- W2007951540 cites W2071602487 @default.
- W2007951540 cites W2071882742 @default.
- W2007951540 cites W2077390566 @default.
- W2007951540 cites W2078376347 @default.
- W2007951540 cites W2079224763 @default.
- W2007951540 cites W2086117738 @default.
- W2007951540 cites W2140518625 @default.
- W2007951540 cites W2149027302 @default.
- W2007951540 cites W2161278885 @default.
- W2007951540 cites W2166425421 @default.
- W2007951540 doi "https://doi.org/10.1016/s0954-1810(01)00006-1" @default.
- W2007951540 hasPublicationYear "2001" @default.
- W2007951540 type Work @default.
- W2007951540 sameAs 2007951540 @default.
- W2007951540 citedByCount "16" @default.
- W2007951540 countsByYear W20079515402012 @default.
- W2007951540 countsByYear W20079515402016 @default.
- W2007951540 countsByYear W20079515402018 @default.
- W2007951540 countsByYear W20079515402021 @default.
- W2007951540 countsByYear W20079515402022 @default.
- W2007951540 crossrefType "journal-article" @default.
- W2007951540 hasAuthorship W2007951540A5018952300 @default.
- W2007951540 hasAuthorship W2007951540A5063250962 @default.
- W2007951540 hasConcept C105795698 @default.
- W2007951540 hasConcept C11413529 @default.
- W2007951540 hasConcept C117251300 @default.
- W2007951540 hasConcept C119857082 @default.
- W2007951540 hasConcept C134306372 @default.
- W2007951540 hasConcept C14036430 @default.
- W2007951540 hasConcept C154945302 @default.
- W2007951540 hasConcept C184389593 @default.
- W2007951540 hasConcept C206423108 @default.
- W2007951540 hasConcept C2524010 @default.
- W2007951540 hasConcept C33923547 @default.
- W2007951540 hasConcept C34179328 @default.
- W2007951540 hasConcept C41008148 @default.
- W2007951540 hasConcept C50644808 @default.
- W2007951540 hasConcept C5917680 @default.
- W2007951540 hasConcept C62354387 @default.
- W2007951540 hasConcept C78458016 @default.
- W2007951540 hasConcept C86803240 @default.
- W2007951540 hasConcept C91873725 @default.
- W2007951540 hasConcept C99636146 @default.
- W2007951540 hasConceptScore W2007951540C105795698 @default.
- W2007951540 hasConceptScore W2007951540C11413529 @default.
- W2007951540 hasConceptScore W2007951540C117251300 @default.
- W2007951540 hasConceptScore W2007951540C119857082 @default.
- W2007951540 hasConceptScore W2007951540C134306372 @default.
- W2007951540 hasConceptScore W2007951540C14036430 @default.
- W2007951540 hasConceptScore W2007951540C154945302 @default.
- W2007951540 hasConceptScore W2007951540C184389593 @default.
- W2007951540 hasConceptScore W2007951540C206423108 @default.
- W2007951540 hasConceptScore W2007951540C2524010 @default.
- W2007951540 hasConceptScore W2007951540C33923547 @default.
- W2007951540 hasConceptScore W2007951540C34179328 @default.
- W2007951540 hasConceptScore W2007951540C41008148 @default.
- W2007951540 hasConceptScore W2007951540C50644808 @default.
- W2007951540 hasConceptScore W2007951540C5917680 @default.
- W2007951540 hasConceptScore W2007951540C62354387 @default.
- W2007951540 hasConceptScore W2007951540C78458016 @default.
- W2007951540 hasConceptScore W2007951540C86803240 @default.
- W2007951540 hasConceptScore W2007951540C91873725 @default.
- W2007951540 hasConceptScore W2007951540C99636146 @default.
- W2007951540 hasIssue "3" @default.
- W2007951540 hasLocation W20079515401 @default.
- W2007951540 hasOpenAccess W2007951540 @default.
- W2007951540 hasPrimaryLocation W20079515401 @default.
- W2007951540 hasRelatedWork W1165230157 @default.
- W2007951540 hasRelatedWork W1597654480 @default.
- W2007951540 hasRelatedWork W1994950933 @default.
- W2007951540 hasRelatedWork W2002088832 @default.
- W2007951540 hasRelatedWork W2194207844 @default.
- W2007951540 hasRelatedWork W2281104490 @default.
- W2007951540 hasRelatedWork W2603457763 @default.
- W2007951540 hasRelatedWork W2953297366 @default.
- W2007951540 hasRelatedWork W2964223321 @default.
- W2007951540 hasRelatedWork W2969628250 @default.
- W2007951540 hasVolume "15" @default.
- W2007951540 isParatext "false" @default.
- W2007951540 isRetracted "false" @default.
- W2007951540 magId "2007951540" @default.
- W2007951540 workType "article" @default.