Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008045161> ?p ?o ?g. }
- W2008045161 abstract "Despite the great successes of the cold dark matter (CDM) model in explaining a wide range of observations of the global evolution and the formation of galaxies and large-scale structure in the Universe, the origin and microscopic nature of dark matter is still unknown. The most common form of CDM considered to date is that of weakly interacting massive particles (WIMPs), but, so far, attempts to detect WIMPs directly or indirectly have not yet succeeded, and the allowed range of particle parameters has been significantly restricted. Some of the cosmological predictions for this kind of CDM are even in apparent conflict with observations (e.g., cuspy-cored halos and an overabundance of satellite dwarf galaxies). For these reasons, it is important to consider the consequences of different forms of CDM. We focus here on the hypothesis that the dark matter is comprised, instead, of ultralight bosons that form a Bose--Einstein condensate, described by a complex scalar field, for which particle number per unit comoving volume is conserved. We start from the Klein--Gordon and Einstein field equations to describe the evolution of the Friedmann--Robertson--Walker universe in the presence of this kind of dark matter. We find that, in addition to the radiation-, matter-, and $mathrm{ensuremath{Lambda}}$-dominated phases familiar from the standard CDM model, there is an earlier phase of scalar-field domination, which is special to this model. In addition, while WIMP CDM is nonrelativistic at all times after it decouples, the equation of state of Bose--Einstein condensed scalar field dark matter (SFDM) is found to be relativistic at early times, evolving from stiff ($overline{p}=overline{ensuremath{rho}}$) to radiationlike ($overline{p}=overline{ensuremath{rho}}/3$), before it becomes nonrelativistic and CDM-like at late times ($overline{p}=0$). The timing of the transitions between these phases and regimes is shown to yield fundamental constraints on the SFDM model parameters, particle mass $m$, and self-interaction coupling strength $ensuremath{lambda}$. We show that SFDM is compatible with observations of the evolving background universe, by deriving the range of particle parameters required to match observations of the cosmic microwave background (CMB) and the abundances of the light elements produced by big bang nucleosynthesis (BBN), including ${N}_{mathrm{eff}}$, the effective number of neutrino species, and the epoch of matter-radiation equality ${z}_{mathrm{eq}}$. This yields $mensuremath{ge}2.4ifmmodetimeselsetexttimesfi{}1{0}^{ensuremath{-}21}text{ }mathrm{eV}/{c}^{2}$ and $9.5ifmmodetimeselsetexttimesfi{}{10}^{ensuremath{-}9}text{ }text{ }{mathrm{eV}}^{ensuremath{-}1}text{ }{mathrm{cm}}^{3}ensuremath{le}ensuremath{lambda}/({mathrm{mc}}^{2}{)}^{2}ensuremath{le}4ifmmodetimeselsetexttimesfi{}{10}^{ensuremath{-}17}text{ }text{ }{mathrm{eV}}^{ensuremath{-}1}text{ }{mathrm{cm}}^{3}$. Indeed, our model can accommodate current observations in which ${N}_{mathrm{eff}}$ is higher at the BBN epoch than at ${z}_{mathrm{eq}}$, probed by the CMB, which is otherwise unexplained by the standard CDM model involving WIMPs. We also show that SFDM without self-interaction (also called ``fuzzy dark matter'') is not able to comply with the current constraints from BBN within 68% confidence and is therefore disfavored." @default.
- W2008045161 created "2016-06-24" @default.
- W2008045161 creator A5032091808 @default.
- W2008045161 creator A5043122555 @default.
- W2008045161 creator A5072202629 @default.
- W2008045161 date "2014-04-30" @default.
- W2008045161 modified "2023-10-11" @default.
- W2008045161 title "Cosmological constraints on Bose-Einstein-condensed scalar field dark matter" @default.
- W2008045161 cites W1481345939 @default.
- W2008045161 cites W1487553683 @default.
- W2008045161 cites W1632875404 @default.
- W2008045161 cites W1816410395 @default.
- W2008045161 cites W1939413828 @default.
- W2008045161 cites W1964557138 @default.
- W2008045161 cites W1976030533 @default.
- W2008045161 cites W1976357303 @default.
- W2008045161 cites W1980531490 @default.
- W2008045161 cites W1982123390 @default.
- W2008045161 cites W1984884645 @default.
- W2008045161 cites W1992482039 @default.
- W2008045161 cites W1992912115 @default.
- W2008045161 cites W1994405258 @default.
- W2008045161 cites W1999246529 @default.
- W2008045161 cites W2002726659 @default.
- W2008045161 cites W2010581546 @default.
- W2008045161 cites W2014420597 @default.
- W2008045161 cites W2036142790 @default.
- W2008045161 cites W2039780899 @default.
- W2008045161 cites W2047295711 @default.
- W2008045161 cites W2057691056 @default.
- W2008045161 cites W2063058190 @default.
- W2008045161 cites W2063133723 @default.
- W2008045161 cites W2065980009 @default.
- W2008045161 cites W2067083584 @default.
- W2008045161 cites W2070455023 @default.
- W2008045161 cites W2073412085 @default.
- W2008045161 cites W2077941965 @default.
- W2008045161 cites W2080690471 @default.
- W2008045161 cites W2083675127 @default.
- W2008045161 cites W2085061516 @default.
- W2008045161 cites W2086249589 @default.
- W2008045161 cites W2086491123 @default.
- W2008045161 cites W2086764681 @default.
- W2008045161 cites W2099654409 @default.
- W2008045161 cites W2108317580 @default.
- W2008045161 cites W2108477648 @default.
- W2008045161 cites W2108973526 @default.
- W2008045161 cites W2110702670 @default.
- W2008045161 cites W2122809416 @default.
- W2008045161 cites W2124341150 @default.
- W2008045161 cites W2135403967 @default.
- W2008045161 cites W2135748922 @default.
- W2008045161 cites W2137919480 @default.
- W2008045161 cites W2139031955 @default.
- W2008045161 cites W2147875900 @default.
- W2008045161 cites W2149018858 @default.
- W2008045161 cites W2149577393 @default.
- W2008045161 cites W2150327128 @default.
- W2008045161 cites W2162231850 @default.
- W2008045161 cites W2163868362 @default.
- W2008045161 cites W2174056583 @default.
- W2008045161 cites W2949915762 @default.
- W2008045161 cites W2964283458 @default.
- W2008045161 cites W3037395653 @default.
- W2008045161 cites W3037896898 @default.
- W2008045161 cites W3098675694 @default.
- W2008045161 cites W3099384065 @default.
- W2008045161 cites W3099948699 @default.
- W2008045161 cites W3100110286 @default.
- W2008045161 cites W3100514957 @default.
- W2008045161 cites W3104124239 @default.
- W2008045161 cites W3104814621 @default.
- W2008045161 cites W3105225363 @default.
- W2008045161 cites W3105942349 @default.
- W2008045161 cites W4237064514 @default.
- W2008045161 doi "https://doi.org/10.1103/physrevd.89.083536" @default.
- W2008045161 hasPublicationYear "2014" @default.
- W2008045161 type Work @default.
- W2008045161 sameAs 2008045161 @default.
- W2008045161 citedByCount "141" @default.
- W2008045161 countsByYear W20080451612014 @default.
- W2008045161 countsByYear W20080451612015 @default.
- W2008045161 countsByYear W20080451612016 @default.
- W2008045161 countsByYear W20080451612017 @default.
- W2008045161 countsByYear W20080451612018 @default.
- W2008045161 countsByYear W20080451612019 @default.
- W2008045161 countsByYear W20080451612020 @default.
- W2008045161 countsByYear W20080451612021 @default.
- W2008045161 countsByYear W20080451612022 @default.
- W2008045161 countsByYear W20080451612023 @default.
- W2008045161 crossrefType "journal-article" @default.
- W2008045161 hasAuthorship W2008045161A5032091808 @default.
- W2008045161 hasAuthorship W2008045161A5043122555 @default.
- W2008045161 hasAuthorship W2008045161A5072202629 @default.
- W2008045161 hasBestOaLocation W20080451612 @default.
- W2008045161 hasConcept C109214941 @default.
- W2008045161 hasConcept C110521144 @default.
- W2008045161 hasConcept C121332964 @default.
- W2008045161 hasConcept C126320844 @default.
- W2008045161 hasConcept C159249277 @default.