Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008078843> ?p ?o ?g. }
- W2008078843 abstract "Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño‐Southern Oscillation and the stratospheric quasi‐biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real‐world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm." @default.
- W2008078843 created "2016-06-24" @default.
- W2008078843 creator A5002339270 @default.
- W2008078843 date "2004-03-01" @default.
- W2008078843 modified "2023-10-16" @default.
- W2008078843 title "Nonlinear multivariate and time series analysis by neural network methods" @default.
- W2008078843 cites W1495594967 @default.
- W2008078843 cites W1567613449 @default.
- W2008078843 cites W1965269526 @default.
- W2008078843 cites W1965913815 @default.
- W2008078843 cites W1967722715 @default.
- W2008078843 cites W1975549322 @default.
- W2008078843 cites W1977177161 @default.
- W2008078843 cites W1985772059 @default.
- W2008078843 cites W1989287082 @default.
- W2008078843 cites W1995341919 @default.
- W2008078843 cites W1997320786 @default.
- W2008078843 cites W1997775149 @default.
- W2008078843 cites W1997965195 @default.
- W2008078843 cites W2008505918 @default.
- W2008078843 cites W2011255563 @default.
- W2008078843 cites W2012276975 @default.
- W2008078843 cites W2013960556 @default.
- W2008078843 cites W2014584967 @default.
- W2008078843 cites W2024207974 @default.
- W2008078843 cites W2025415734 @default.
- W2008078843 cites W2029773537 @default.
- W2008078843 cites W2043473479 @default.
- W2008078843 cites W2045873454 @default.
- W2008078843 cites W2047041657 @default.
- W2008078843 cites W2049252044 @default.
- W2008078843 cites W2052609457 @default.
- W2008078843 cites W2054923071 @default.
- W2008078843 cites W2055513867 @default.
- W2008078843 cites W2057835282 @default.
- W2008078843 cites W2064827340 @default.
- W2008078843 cites W2073064546 @default.
- W2008078843 cites W2074055554 @default.
- W2008078843 cites W2084547407 @default.
- W2008078843 cites W2099741732 @default.
- W2008078843 cites W2103496339 @default.
- W2008078843 cites W2108292794 @default.
- W2008078843 cites W2116322594 @default.
- W2008078843 cites W2120949479 @default.
- W2008078843 cites W2122538988 @default.
- W2008078843 cites W2130055251 @default.
- W2008078843 cites W2135059533 @default.
- W2008078843 cites W2137983211 @default.
- W2008078843 cites W2139094401 @default.
- W2008078843 cites W2141394518 @default.
- W2008078843 cites W2141524717 @default.
- W2008078843 cites W2152287823 @default.
- W2008078843 cites W2160840673 @default.
- W2008078843 cites W2166361350 @default.
- W2008078843 cites W2169447972 @default.
- W2008078843 cites W2172462666 @default.
- W2008078843 cites W2174817738 @default.
- W2008078843 cites W2176281349 @default.
- W2008078843 cites W2177329316 @default.
- W2008078843 cites W2177561945 @default.
- W2008078843 cites W2178063079 @default.
- W2008078843 cites W2179984466 @default.
- W2008078843 cites W2181130805 @default.
- W2008078843 cites W2181184607 @default.
- W2008078843 cites W4237454423 @default.
- W2008078843 cites W4241395986 @default.
- W2008078843 cites W4251002338 @default.
- W2008078843 cites W4300402905 @default.
- W2008078843 cites W65738273 @default.
- W2008078843 doi "https://doi.org/10.1029/2002rg000112" @default.
- W2008078843 hasPublicationYear "2004" @default.
- W2008078843 type Work @default.
- W2008078843 sameAs 2008078843 @default.
- W2008078843 citedByCount "136" @default.
- W2008078843 countsByYear W20080788432012 @default.
- W2008078843 countsByYear W20080788432013 @default.
- W2008078843 countsByYear W20080788432014 @default.
- W2008078843 countsByYear W20080788432015 @default.
- W2008078843 countsByYear W20080788432016 @default.
- W2008078843 countsByYear W20080788432017 @default.
- W2008078843 countsByYear W20080788432018 @default.
- W2008078843 countsByYear W20080788432019 @default.
- W2008078843 countsByYear W20080788432020 @default.
- W2008078843 countsByYear W20080788432021 @default.
- W2008078843 countsByYear W20080788432022 @default.
- W2008078843 countsByYear W20080788432023 @default.
- W2008078843 crossrefType "journal-article" @default.
- W2008078843 hasAuthorship W2008078843A5002339270 @default.
- W2008078843 hasBestOaLocation W20080788431 @default.
- W2008078843 hasConcept C11413529 @default.
- W2008078843 hasConcept C119857082 @default.
- W2008078843 hasConcept C121332964 @default.
- W2008078843 hasConcept C124101348 @default.
- W2008078843 hasConcept C127313418 @default.
- W2008078843 hasConcept C136272165 @default.
- W2008078843 hasConcept C143724316 @default.
- W2008078843 hasConcept C151406439 @default.
- W2008078843 hasConcept C151730666 @default.
- W2008078843 hasConcept C153180895 @default.
- W2008078843 hasConcept C153874254 @default.