Matches in SemOpenAlex for { <https://semopenalex.org/work/W200817405> ?p ?o ?g. }
- W200817405 abstract "The acoustic character of a space is often quantified using objective room acoustic parameters. The measurement of these parameters is difficult in occupied conditions and thus measurements are usually performed when the space is un-occupied. This is despite the knowledge that occupancy can impact significantly on the measured parameter value. Within this thesis new methods are developed by which naturalistic signals such as speech and music can be used to perform acoustic parameter measurement. Adoption of naturalistic signals enables passive measurement during orchestral performances and spoken announcements, thus facilitating easy in-situ measurement.Two methods are described within this work; (1) a method utilising artificial neural networks where a network is taught to recognise acoustic parameters from received, reverberated signals and (2) a method based on the maximum likelihood estimation of the decay curve of the room from which parameters are then calculated. (1)The development of the neural network method focuses on a new pre-processor for use with music signals. The pre-processor utilises a narrow band filter bank with centre frequencies chosen based on the equal temperament scale. The success of a machine learning method is linked to the quality of the training data and therefore realistic acoustic simulation algorithms were used to generate a large database of room impulse responses. Room models were defined with realistic randomly generated geometries and surface properties; these models were then used to predict the room impulse responses.(2)In the second approach, a statistical model of the decay of sound in a room was further developed. This model uses a maximum likelihood (ML) framework to yield a number of decay curve estimates from a received reverberant signal. The success of the method depends on a number of stages developed for the algorithm; (a) a pre-processor to select appropriate decay phases for estimation purposes, (b) a rigorous optimisation algorithm to ensure the correct maximum likelihood estimate is found and (c) a method to yield a single optimum decay curve estimate from which the parameters are calculated.The ANN and ML methods were tested using orchestral music and speech signals. The ANN method tended to perform well when estimating the early decay time (EDT), for speech and music signals the error was within the subjective difference limens. However, accuracy was reduced for the reverberation time (Rt) and other parameters. By contrast the ML method performed well for Rt with results for both speech and music within the difference limens for reasonable (<4s) reverberation time. In addition reasonable accuracy was found for EDT, Clarity (C80), Centre time (Ts) and Deutichkeit (D). The ML method is also capable of producing accurate estimates of the binaural parameters Early Lateral Energy Fraction (LEF) and the late lateral strength (LG).A number of real world measurements were carried out in concert halls where the ML accuracy was shown to be sufficient for most parameters. The ML method has the advantage over the ANN method due to its truly blind nature (the ANN method requires a period of learning and is therefore semi-blind). The ML method uses gaps of silence between notes or utterances, when these silence regions are not present the method does not produce an estimate. Accurate estimation requires a long recording (hours of music or many minutes of speech) to ensure that at least some silent regions are present. This thesis shows that, given a sufficiently long recording, accurate estimates of many acoustic parameters can be obtained directly from speech and music.Further extensions to the ML method detailed in this thesis combine the ML estimated decay curve with cepstral methods which detect the locations of early reflections. This improves the accuracy of many of the parameter estimates." @default.
- W200817405 created "2016-06-24" @default.
- W200817405 creator A5050271173 @default.
- W200817405 date "2009-03-01" @default.
- W200817405 modified "2023-09-23" @default.
- W200817405 title "Blind estimation of room acoustic parameters from speech and music signals" @default.
- W200817405 cites W1493451397 @default.
- W200817405 cites W1498436455 @default.
- W200817405 cites W1521250594 @default.
- W200817405 cites W1525700840 @default.
- W200817405 cites W1528140509 @default.
- W200817405 cites W1535753232 @default.
- W200817405 cites W1535810436 @default.
- W200817405 cites W1540596182 @default.
- W200817405 cites W1552481752 @default.
- W200817405 cites W1555649884 @default.
- W200817405 cites W1569827162 @default.
- W200817405 cites W1581488812 @default.
- W200817405 cites W1582050363 @default.
- W200817405 cites W1586100143 @default.
- W200817405 cites W173255768 @default.
- W200817405 cites W1973279071 @default.
- W200817405 cites W1979731145 @default.
- W200817405 cites W1982310551 @default.
- W200817405 cites W1987831012 @default.
- W200817405 cites W1995341919 @default.
- W200817405 cites W2012015637 @default.
- W200817405 cites W2019254616 @default.
- W200817405 cites W2024060531 @default.
- W200817405 cites W2025238409 @default.
- W200817405 cites W2028765500 @default.
- W200817405 cites W2040870580 @default.
- W200817405 cites W2043551274 @default.
- W200817405 cites W2049304293 @default.
- W200817405 cites W2053627875 @default.
- W200817405 cites W2054247614 @default.
- W200817405 cites W2058751961 @default.
- W200817405 cites W2067431109 @default.
- W200817405 cites W2070092425 @default.
- W200817405 cites W2077658674 @default.
- W200817405 cites W2081892670 @default.
- W200817405 cites W2086286498 @default.
- W200817405 cites W2100485456 @default.
- W200817405 cites W211110418 @default.
- W200817405 cites W2117678320 @default.
- W200817405 cites W2120951974 @default.
- W200817405 cites W2124776405 @default.
- W200817405 cites W2147388619 @default.
- W200817405 cites W2152710595 @default.
- W200817405 cites W2154900287 @default.
- W200817405 cites W2155482699 @default.
- W200817405 cites W2155690020 @default.
- W200817405 cites W2156495006 @default.
- W200817405 cites W2163599171 @default.
- W200817405 cites W2609865420 @default.
- W200817405 cites W2732461804 @default.
- W200817405 cites W2737870520 @default.
- W200817405 cites W2970850616 @default.
- W200817405 cites W3019584399 @default.
- W200817405 cites W3156744082 @default.
- W200817405 cites W3173138228 @default.
- W200817405 cites W37162924 @default.
- W200817405 cites W2466833302 @default.
- W200817405 cites W48104156 @default.
- W200817405 hasPublicationYear "2009" @default.
- W200817405 type Work @default.
- W200817405 sameAs 200817405 @default.
- W200817405 citedByCount "0" @default.
- W200817405 crossrefType "dissertation" @default.
- W200817405 hasAuthorship W200817405A5050271173 @default.
- W200817405 hasConcept C121332964 @default.
- W200817405 hasConcept C154945302 @default.
- W200817405 hasConcept C178432105 @default.
- W200817405 hasConcept C24890656 @default.
- W200817405 hasConcept C28490314 @default.
- W200817405 hasConcept C41008148 @default.
- W200817405 hasConcept C50644808 @default.
- W200817405 hasConcept C62520636 @default.
- W200817405 hasConcept C70836080 @default.
- W200817405 hasConcept C95851461 @default.
- W200817405 hasConceptScore W200817405C121332964 @default.
- W200817405 hasConceptScore W200817405C154945302 @default.
- W200817405 hasConceptScore W200817405C178432105 @default.
- W200817405 hasConceptScore W200817405C24890656 @default.
- W200817405 hasConceptScore W200817405C28490314 @default.
- W200817405 hasConceptScore W200817405C41008148 @default.
- W200817405 hasConceptScore W200817405C50644808 @default.
- W200817405 hasConceptScore W200817405C62520636 @default.
- W200817405 hasConceptScore W200817405C70836080 @default.
- W200817405 hasConceptScore W200817405C95851461 @default.
- W200817405 hasLocation W2008174051 @default.
- W200817405 hasOpenAccess W200817405 @default.
- W200817405 hasPrimaryLocation W2008174051 @default.
- W200817405 hasRelatedWork W1979181830 @default.
- W200817405 hasRelatedWork W2006494901 @default.
- W200817405 hasRelatedWork W2087799238 @default.
- W200817405 hasRelatedWork W2101791063 @default.
- W200817405 hasRelatedWork W2107012458 @default.
- W200817405 hasRelatedWork W2111469729 @default.
- W200817405 hasRelatedWork W2118821314 @default.