Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008196311> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2008196311 abstract "In clustering applications involving documents and images, in addition to the large number of data points (N) and their high dimensionality (d), the number of clusters (C) into which the data need to be partitioned is also large. Kernel-based clustering algorithms, which have been shown to perform better than linear clustering algorithms, have high running time complexity in terms of N, d and C. We propose an efficient sparse kernel k-means clustering algorithm, which incrementally samples the most informative points from the data set using importance sampling, and constructs a sparse kernel matrix using these sampled points. Each row in this matrix corresponds to a data point's similarity with its p-nearest neighbors among the sampled points (p -- N). This sparse kernel matrix is used to perform clustering and obtain the cluster labels. This combination of sampling and sparsity reduces both the running time and memory complexity of kernel clustering. In order to further enhance its efficiency, the proposed algorithm projects the data on to the top C eigenvectors of the sparse kernel matrix and clusters these eigenvectors using a modified k-means algorithm. The running time of the proposed sparse kernel k-means algorithm is linear in N and d, and logarithmic in C. We show analytically that only a small number of points need to be sampled from the data set, and the resulting approximation error is well-bounded. We demonstrate, using several large high-dimensional text and image data sets, that the proposed algorithm is significantly faster than classical kernel-based clustering algorithms, while maintaining clustering quality." @default.
- W2008196311 created "2016-06-24" @default.
- W2008196311 creator A5007029060 @default.
- W2008196311 creator A5047281666 @default.
- W2008196311 creator A5069394608 @default.
- W2008196311 date "2015-10-18" @default.
- W2008196311 modified "2023-10-14" @default.
- W2008196311 title "Sparse Kernel Clustering of Massive High-Dimensional Data sets with Large Number of Clusters" @default.
- W2008196311 cites W1918870341 @default.
- W2008196311 cites W1943383135 @default.
- W2008196311 cites W1977994906 @default.
- W2008196311 cites W1986007546 @default.
- W2008196311 cites W2011430131 @default.
- W2008196311 cites W2036122709 @default.
- W2008196311 cites W2047244756 @default.
- W2008196311 cites W2086504823 @default.
- W2008196311 cites W2108598243 @default.
- W2008196311 cites W2116810533 @default.
- W2008196311 cites W2125687218 @default.
- W2008196311 cites W2132914434 @default.
- W2008196311 cites W2145607950 @default.
- W2008196311 cites W2154249783 @default.
- W2008196311 cites W2161160262 @default.
- W2008196311 cites W2167853719 @default.
- W2008196311 cites W2173213060 @default.
- W2008196311 cites W2616345629 @default.
- W2008196311 cites W2962963658 @default.
- W2008196311 doi "https://doi.org/10.1145/2809890.2809896" @default.
- W2008196311 hasPublicationYear "2015" @default.
- W2008196311 type Work @default.
- W2008196311 sameAs 2008196311 @default.
- W2008196311 citedByCount "5" @default.
- W2008196311 countsByYear W20081963112015 @default.
- W2008196311 countsByYear W20081963112018 @default.
- W2008196311 countsByYear W20081963112020 @default.
- W2008196311 countsByYear W20081963112022 @default.
- W2008196311 crossrefType "proceedings-article" @default.
- W2008196311 hasAuthorship W2008196311A5007029060 @default.
- W2008196311 hasAuthorship W2008196311A5047281666 @default.
- W2008196311 hasAuthorship W2008196311A5069394608 @default.
- W2008196311 hasConcept C114614502 @default.
- W2008196311 hasConcept C124101348 @default.
- W2008196311 hasConcept C154945302 @default.
- W2008196311 hasConcept C33923547 @default.
- W2008196311 hasConcept C41008148 @default.
- W2008196311 hasConcept C73555534 @default.
- W2008196311 hasConcept C74193536 @default.
- W2008196311 hasConceptScore W2008196311C114614502 @default.
- W2008196311 hasConceptScore W2008196311C124101348 @default.
- W2008196311 hasConceptScore W2008196311C154945302 @default.
- W2008196311 hasConceptScore W2008196311C33923547 @default.
- W2008196311 hasConceptScore W2008196311C41008148 @default.
- W2008196311 hasConceptScore W2008196311C73555534 @default.
- W2008196311 hasConceptScore W2008196311C74193536 @default.
- W2008196311 hasLocation W20081963111 @default.
- W2008196311 hasOpenAccess W2008196311 @default.
- W2008196311 hasPrimaryLocation W20081963111 @default.
- W2008196311 hasRelatedWork W1849651648 @default.
- W2008196311 hasRelatedWork W1979871427 @default.
- W2008196311 hasRelatedWork W1999627569 @default.
- W2008196311 hasRelatedWork W2187506573 @default.
- W2008196311 hasRelatedWork W2348097614 @default.
- W2008196311 hasRelatedWork W2354051833 @default.
- W2008196311 hasRelatedWork W2387405106 @default.
- W2008196311 hasRelatedWork W2392374020 @default.
- W2008196311 hasRelatedWork W4243523185 @default.
- W2008196311 hasRelatedWork W763609066 @default.
- W2008196311 isParatext "false" @default.
- W2008196311 isRetracted "false" @default.
- W2008196311 magId "2008196311" @default.
- W2008196311 workType "article" @default.