Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008330147> ?p ?o ?g. }
- W2008330147 endingPage "38" @default.
- W2008330147 startingPage "29" @default.
- W2008330147 abstract "We consider regularized covariance estimation in scaled Gaussian settings, e.g., elliptical distributions, compound-Gaussian processes and spherically invariant random vectors. Asymptotically in the number of samples, the classical maximum likelihood (ML) estimate is optimal under different criteria and can be efficiently computed even though the optimization is nonconvex. We propose a unified framework for regularizing this estimate in order to improve its finite sample performance. Our approach is based on the discovery of hidden convexity within the ML objective. We begin by restricting the attention to diagonal covariance matrices. Using a simple change of variables, we transform the problem into a convex optimization that can be efficiently solved. We then extend this idea to nondiagonal matrices using convexity on the manifold of positive definite matrices. We regularize the problem using appropriately convex penalties. These allow for shrinkage towards the identity matrix, shrinkage towards a diagonal matrix, shrinkage towards a given positive definite matrix, and regularization of the condition number. We demonstrate the advantages of these estimators using numerical simulations." @default.
- W2008330147 created "2016-06-24" @default.
- W2008330147 creator A5091732723 @default.
- W2008330147 date "2012-01-01" @default.
- W2008330147 modified "2023-09-26" @default.
- W2008330147 title "Unified Framework to Regularized Covariance Estimation in Scaled Gaussian Models" @default.
- W2008330147 cites W1965518343 @default.
- W2008330147 cites W1966701961 @default.
- W2008330147 cites W1971672021 @default.
- W2008330147 cites W1975377467 @default.
- W2008330147 cites W1983104971 @default.
- W2008330147 cites W1984614739 @default.
- W2008330147 cites W1990512452 @default.
- W2008330147 cites W2008418230 @default.
- W2008330147 cites W2019740336 @default.
- W2008330147 cites W2032236594 @default.
- W2008330147 cites W2047458638 @default.
- W2008330147 cites W2050595971 @default.
- W2008330147 cites W2062125287 @default.
- W2008330147 cites W2073416223 @default.
- W2008330147 cites W2103286460 @default.
- W2008330147 cites W2106199973 @default.
- W2008330147 cites W2106265255 @default.
- W2008330147 cites W2108458053 @default.
- W2008330147 cites W2109363365 @default.
- W2008330147 cites W2112820013 @default.
- W2008330147 cites W2118443009 @default.
- W2008330147 cites W2119963163 @default.
- W2008330147 cites W2126568557 @default.
- W2008330147 cites W2134343800 @default.
- W2008330147 cites W2147116730 @default.
- W2008330147 cites W2150663930 @default.
- W2008330147 cites W2152516315 @default.
- W2008330147 cites W2161503240 @default.
- W2008330147 cites W2162654459 @default.
- W2008330147 cites W2166279893 @default.
- W2008330147 cites W2168703653 @default.
- W2008330147 cites W2171048418 @default.
- W2008330147 cites W23712394 @default.
- W2008330147 cites W4205293427 @default.
- W2008330147 cites W4205806204 @default.
- W2008330147 cites W4246883249 @default.
- W2008330147 cites W4250589301 @default.
- W2008330147 cites W2081622708 @default.
- W2008330147 doi "https://doi.org/10.1109/tsp.2011.2170685" @default.
- W2008330147 hasPublicationYear "2012" @default.
- W2008330147 type Work @default.
- W2008330147 sameAs 2008330147 @default.
- W2008330147 citedByCount "92" @default.
- W2008330147 countsByYear W20083301472012 @default.
- W2008330147 countsByYear W20083301472013 @default.
- W2008330147 countsByYear W20083301472014 @default.
- W2008330147 countsByYear W20083301472015 @default.
- W2008330147 countsByYear W20083301472016 @default.
- W2008330147 countsByYear W20083301472017 @default.
- W2008330147 countsByYear W20083301472018 @default.
- W2008330147 countsByYear W20083301472019 @default.
- W2008330147 countsByYear W20083301472020 @default.
- W2008330147 countsByYear W20083301472021 @default.
- W2008330147 countsByYear W20083301472022 @default.
- W2008330147 countsByYear W20083301472023 @default.
- W2008330147 crossrefType "journal-article" @default.
- W2008330147 hasAuthorship W2008330147A5091732723 @default.
- W2008330147 hasBestOaLocation W20083301472 @default.
- W2008330147 hasConcept C105795698 @default.
- W2008330147 hasConcept C11413529 @default.
- W2008330147 hasConcept C121332964 @default.
- W2008330147 hasConcept C137250428 @default.
- W2008330147 hasConcept C154945302 @default.
- W2008330147 hasConcept C162324750 @default.
- W2008330147 hasConcept C163716315 @default.
- W2008330147 hasConcept C167928553 @default.
- W2008330147 hasConcept C178650346 @default.
- W2008330147 hasConcept C180877172 @default.
- W2008330147 hasConcept C185142706 @default.
- W2008330147 hasConcept C187736073 @default.
- W2008330147 hasConcept C28826006 @default.
- W2008330147 hasConcept C33923547 @default.
- W2008330147 hasConcept C41008148 @default.
- W2008330147 hasConcept C61326573 @default.
- W2008330147 hasConcept C62520636 @default.
- W2008330147 hasConcept C83042196 @default.
- W2008330147 hasConcept C96250715 @default.
- W2008330147 hasConceptScore W2008330147C105795698 @default.
- W2008330147 hasConceptScore W2008330147C11413529 @default.
- W2008330147 hasConceptScore W2008330147C121332964 @default.
- W2008330147 hasConceptScore W2008330147C137250428 @default.
- W2008330147 hasConceptScore W2008330147C154945302 @default.
- W2008330147 hasConceptScore W2008330147C162324750 @default.
- W2008330147 hasConceptScore W2008330147C163716315 @default.
- W2008330147 hasConceptScore W2008330147C167928553 @default.
- W2008330147 hasConceptScore W2008330147C178650346 @default.
- W2008330147 hasConceptScore W2008330147C180877172 @default.
- W2008330147 hasConceptScore W2008330147C185142706 @default.
- W2008330147 hasConceptScore W2008330147C187736073 @default.
- W2008330147 hasConceptScore W2008330147C28826006 @default.
- W2008330147 hasConceptScore W2008330147C33923547 @default.
- W2008330147 hasConceptScore W2008330147C41008148 @default.