Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008352624> ?p ?o ?g. }
- W2008352624 abstract "Sequential Monte Carlo (“particle filtering”) methods provide a powerful set of tools for recursive optimal Bayesian filtering in state-space models. However, these methods are based on importance sampling, which is known to be non-robust in several key scenarios, and therefore standard particle filtering methods can fail in these settings. We present a filtering method which solves the key forward recursion using a reparameterized Gibbs sampling method, thus sidestepping the need for importance sampling. In many cases the resulting filter is much more robust and efficient than standard importance-sampling particle filter implementations. We illustrate the method with an application to a nonlinear, non-Gaussian model from neuroscience." @default.
- W2008352624 created "2016-06-24" @default.
- W2008352624 creator A5022092175 @default.
- W2008352624 creator A5023278055 @default.
- W2008352624 creator A5059066682 @default.
- W2008352624 date "2012-03-01" @default.
- W2008352624 modified "2023-09-26" @default.
- W2008352624 title "Robust particle filters via sequential pairwise reparameterized Gibbs sampling" @default.
- W2008352624 cites W1483307070 @default.
- W2008352624 cites W1512984504 @default.
- W2008352624 cites W1515272691 @default.
- W2008352624 cites W1579271636 @default.
- W2008352624 cites W1670531616 @default.
- W2008352624 cites W1864720896 @default.
- W2008352624 cites W1983628095 @default.
- W2008352624 cites W1984047258 @default.
- W2008352624 cites W1985093013 @default.
- W2008352624 cites W1996508453 @default.
- W2008352624 cites W2029745943 @default.
- W2008352624 cites W2030220471 @default.
- W2008352624 cites W2037339618 @default.
- W2008352624 cites W2043719428 @default.
- W2008352624 cites W2062758445 @default.
- W2008352624 cites W2073840106 @default.
- W2008352624 cites W2090415144 @default.
- W2008352624 cites W2111787305 @default.
- W2008352624 cites W2125838338 @default.
- W2008352624 cites W2131598171 @default.
- W2008352624 cites W2150951085 @default.
- W2008352624 cites W2152869421 @default.
- W2008352624 cites W2168634963 @default.
- W2008352624 cites W2488678869 @default.
- W2008352624 cites W3121154744 @default.
- W2008352624 cites W345956458 @default.
- W2008352624 cites W605692607 @default.
- W2008352624 doi "https://doi.org/10.1109/ciss.2012.6310772" @default.
- W2008352624 hasPublicationYear "2012" @default.
- W2008352624 type Work @default.
- W2008352624 sameAs 2008352624 @default.
- W2008352624 citedByCount "1" @default.
- W2008352624 countsByYear W20083526242015 @default.
- W2008352624 crossrefType "proceedings-article" @default.
- W2008352624 hasAuthorship W2008352624A5022092175 @default.
- W2008352624 hasAuthorship W2008352624A5023278055 @default.
- W2008352624 hasAuthorship W2008352624A5059066682 @default.
- W2008352624 hasBestOaLocation W20083526242 @default.
- W2008352624 hasConcept C105795698 @default.
- W2008352624 hasConcept C106131492 @default.
- W2008352624 hasConcept C107673813 @default.
- W2008352624 hasConcept C111350023 @default.
- W2008352624 hasConcept C11413529 @default.
- W2008352624 hasConcept C121332964 @default.
- W2008352624 hasConcept C126255220 @default.
- W2008352624 hasConcept C13153151 @default.
- W2008352624 hasConcept C140779682 @default.
- W2008352624 hasConcept C154945302 @default.
- W2008352624 hasConcept C157286648 @default.
- W2008352624 hasConcept C158424031 @default.
- W2008352624 hasConcept C163716315 @default.
- W2008352624 hasConcept C187192777 @default.
- W2008352624 hasConcept C19499675 @default.
- W2008352624 hasConcept C26517878 @default.
- W2008352624 hasConcept C31972630 @default.
- W2008352624 hasConcept C33923547 @default.
- W2008352624 hasConcept C38652104 @default.
- W2008352624 hasConcept C41008148 @default.
- W2008352624 hasConcept C52421305 @default.
- W2008352624 hasConcept C52740198 @default.
- W2008352624 hasConcept C62520636 @default.
- W2008352624 hasConceptScore W2008352624C105795698 @default.
- W2008352624 hasConceptScore W2008352624C106131492 @default.
- W2008352624 hasConceptScore W2008352624C107673813 @default.
- W2008352624 hasConceptScore W2008352624C111350023 @default.
- W2008352624 hasConceptScore W2008352624C11413529 @default.
- W2008352624 hasConceptScore W2008352624C121332964 @default.
- W2008352624 hasConceptScore W2008352624C126255220 @default.
- W2008352624 hasConceptScore W2008352624C13153151 @default.
- W2008352624 hasConceptScore W2008352624C140779682 @default.
- W2008352624 hasConceptScore W2008352624C154945302 @default.
- W2008352624 hasConceptScore W2008352624C157286648 @default.
- W2008352624 hasConceptScore W2008352624C158424031 @default.
- W2008352624 hasConceptScore W2008352624C163716315 @default.
- W2008352624 hasConceptScore W2008352624C187192777 @default.
- W2008352624 hasConceptScore W2008352624C19499675 @default.
- W2008352624 hasConceptScore W2008352624C26517878 @default.
- W2008352624 hasConceptScore W2008352624C31972630 @default.
- W2008352624 hasConceptScore W2008352624C33923547 @default.
- W2008352624 hasConceptScore W2008352624C38652104 @default.
- W2008352624 hasConceptScore W2008352624C41008148 @default.
- W2008352624 hasConceptScore W2008352624C52421305 @default.
- W2008352624 hasConceptScore W2008352624C52740198 @default.
- W2008352624 hasConceptScore W2008352624C62520636 @default.
- W2008352624 hasLocation W20083526241 @default.
- W2008352624 hasLocation W20083526242 @default.
- W2008352624 hasOpenAccess W2008352624 @default.
- W2008352624 hasPrimaryLocation W20083526241 @default.
- W2008352624 hasRelatedWork W1560354765 @default.
- W2008352624 hasRelatedWork W1964640552 @default.
- W2008352624 hasRelatedWork W1966543131 @default.
- W2008352624 hasRelatedWork W2009467168 @default.