Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008400529> ?p ?o ?g. }
- W2008400529 endingPage "2" @default.
- W2008400529 startingPage "1" @default.
- W2008400529 abstract "Patients suffering from a wide variety of diseases may benefit from cell-based therapies. Transplantation of nonimmunogenic cells may be able to functionally repair or replace damaged tissue or missing cells with important roles. However, currently available cell-based therapies are limited in scope and have almost exclusively relied on autologous and allogenic sources of transplantable cells. Further prohibiting their widespread use, donor-limited cells can be difficult to obtain, have inadequate expansion capabilities, and may result in graft-versus-host disease. Due to their inexhaustible capability to expand and wide-ranging differentiation potential, human embryonic stem cells (hESCs) and the less ethically controversial induced pluripotent stem cells (iPSCs) hold great promise in serving as alternative cell sources for regenerative medicine and may offer many advantages over currently available cell-based therapies. They may help treat diseases such as atherosclerosis, diabetes, stroke, liver, kidney disease as well as a variety of hematologic and neurologic disorders. This special issue focuses on the promise and therapeutic potential of hESC/iPSCs in a wide variety of diseases. It highlights important advances as well as common problems that must be resolved before the therapeutic potential of hESC/iPSCs becomes clinical reality.One of the biggest safety considerations hindering clinical application of hESC- and iPSC-based products is the risk of tumor formation. Pluripotent cells like hESCs and iPSCS harbor an intrinsic ability to divide and self-renew without undergoing senescence. Many hESC-/iPSC-based therapies are based on derivatives of the cells that are no longer pluripotent, yet the risk of a surviving pluripotent cell possibly contaminating the therapeutic cell preparation is a major safety issue. Inefficient differentiation and incomplete maturation top the list of hurdles that need to be overcome in order to bring hESC-based therapies to the clinic. As many articles in this special issue illustrate, directing the in vitro differentiation of hESCs into therapeutically useful cell types is a complex and often difficult process. From altering cytokine cocktails and media formulations to using scaffolds and 3-dimensional matrices, researchers have applied many different strategies to increase the efficiency of producing the desired cell types from hESCs and iPSCs. Also hampering iPSC research, reprogramming efficiencies, and quality of the resulting iPSC lines vary greatly and need to be optimized before iPSCs can routinely be used to generate patient-specific therapeutic cells. While these issues are being resolved in cell culture labs, hESC-/iPSC-based therapies will also have to undergo rigorous preclinical testing in suitable animal models of disease. As the reader will discover in the ensuing articles, some hESC-/iPSC-based therapies are already being examined in animal models and showing signs of therapeutic utility.Beginning with a review article on tissue engineering, the reader of this special issue will first learn about the use of hESCs to generate chondrocytes, osteocytes, and mesenchymal stromal cells for bone and vascular disease therapies. The next two articles review cell-based therapies to treat hematologic disorders and type 1 diabetes, respectively. The first paper describes how hESCs/iPSC derivatives may be able to substitute for red blood cells, platelets, and various subpopulations of immune surveying white blood cells. The second article focuses on how hESC/iPSCs can be used to generate insulin-producing islet cells and may be able to functionally replace cells of a failing diabetic pancreas. Next, the reader will learn about cardiovascular disease, ischemia, and life-threatening damage to the heart muscle. Two back to back review articles focus on how hESCs and more specifically iPSCs can be used to generate cardiomyocytes and how these powerful cells can improve the function of a heart weakened by tissue damage. Highlighting the far-reaching application of hESC-/iPSC-based therapies, the next two articles move away from the heart and into the brain. The first article introduces the reader to a broad range of neurologic disorders including those with degenerative, developmental, genetic, or metabolic roots. It describes how patient-specific iPSCs can be used in disease models and help develop new therapies. The second paper is a primary research article that examines the therapeutic utility of hESC-derived motor neuron progenitors in rodent models of spinal muscular atrophy, amyotrophic lateral sclerosis, and spinal cord injury. Capping off the broad therapeutic topics covered in this special issue, the eighth and final paper is a primary research article that brings us back to hESCs themselves and their initial derivation. Ethical considerations surrounding the destruction of human embryos provided not only the impetus for the development of iPSCs but also, as this final paper discusses, new derivation methods that avoid the destruction of viable human embryos. From the diverse collection of papers in this special issue, the reader should gain a better understanding of why proponents of hESC/iPSC research lobby so hard for continued research and development. In the face of rising health care costs and widespread clinical need, hESCs and/or iPSCs may one day provide a cost-effective means for large-scale production of therapeutic cells and revolutionize the field of regenerative medicine.Shi-Jiang LuRandall J. LeeClaudio NapoliSteve OhErin A. KimbrelQiang Feng" @default.
- W2008400529 created "2016-06-24" @default.
- W2008400529 creator A5006683878 @default.
- W2008400529 creator A5007116585 @default.
- W2008400529 creator A5020102628 @default.
- W2008400529 creator A5024335529 @default.
- W2008400529 creator A5048451463 @default.
- W2008400529 creator A5061269136 @default.
- W2008400529 date "2011-01-01" @default.
- W2008400529 modified "2023-10-01" @default.
- W2008400529 title "The Promise and Therapeutic Potential of Human ES and iPS Cells" @default.
- W2008400529 cites W1602684793 @default.
- W2008400529 cites W1603508604 @default.
- W2008400529 cites W1853316901 @default.
- W2008400529 cites W1872062849 @default.
- W2008400529 cites W1937940610 @default.
- W2008400529 cites W1966127544 @default.
- W2008400529 cites W1966697558 @default.
- W2008400529 cites W1967049808 @default.
- W2008400529 cites W1968140045 @default.
- W2008400529 cites W1969171954 @default.
- W2008400529 cites W1970947849 @default.
- W2008400529 cites W1973332790 @default.
- W2008400529 cites W1973466789 @default.
- W2008400529 cites W1974173343 @default.
- W2008400529 cites W1975464681 @default.
- W2008400529 cites W1976747060 @default.
- W2008400529 cites W1979842175 @default.
- W2008400529 cites W1981700263 @default.
- W2008400529 cites W1982748372 @default.
- W2008400529 cites W1985310970 @default.
- W2008400529 cites W1986826815 @default.
- W2008400529 cites W1987774343 @default.
- W2008400529 cites W1989780518 @default.
- W2008400529 cites W1991347239 @default.
- W2008400529 cites W1991421066 @default.
- W2008400529 cites W1993064034 @default.
- W2008400529 cites W1994128832 @default.
- W2008400529 cites W1994446230 @default.
- W2008400529 cites W1998521826 @default.
- W2008400529 cites W1998827276 @default.
- W2008400529 cites W1999160414 @default.
- W2008400529 cites W1999809894 @default.
- W2008400529 cites W1999874338 @default.
- W2008400529 cites W2001848617 @default.
- W2008400529 cites W2003935383 @default.
- W2008400529 cites W2006743934 @default.
- W2008400529 cites W2009658991 @default.
- W2008400529 cites W2010177021 @default.
- W2008400529 cites W2010353459 @default.
- W2008400529 cites W2012646473 @default.
- W2008400529 cites W2013721243 @default.
- W2008400529 cites W2014699492 @default.
- W2008400529 cites W2015313458 @default.
- W2008400529 cites W2015979354 @default.
- W2008400529 cites W2016964783 @default.
- W2008400529 cites W2017242584 @default.
- W2008400529 cites W2017770112 @default.
- W2008400529 cites W2018071690 @default.
- W2008400529 cites W2018691632 @default.
- W2008400529 cites W2018775973 @default.
- W2008400529 cites W2019127826 @default.
- W2008400529 cites W2019285503 @default.
- W2008400529 cites W2021257440 @default.
- W2008400529 cites W2023315677 @default.
- W2008400529 cites W2031831924 @default.
- W2008400529 cites W2034238319 @default.
- W2008400529 cites W2036676672 @default.
- W2008400529 cites W2037388456 @default.
- W2008400529 cites W2037396326 @default.
- W2008400529 cites W2041897037 @default.
- W2008400529 cites W2042041738 @default.
- W2008400529 cites W2042742026 @default.
- W2008400529 cites W2043720688 @default.
- W2008400529 cites W2045626197 @default.
- W2008400529 cites W2047839022 @default.
- W2008400529 cites W2048410503 @default.
- W2008400529 cites W2048504493 @default.
- W2008400529 cites W2054588014 @default.
- W2008400529 cites W2056634709 @default.
- W2008400529 cites W2057317105 @default.
- W2008400529 cites W2057405178 @default.
- W2008400529 cites W2058553784 @default.
- W2008400529 cites W2058801421 @default.
- W2008400529 cites W2060726822 @default.
- W2008400529 cites W2061374360 @default.
- W2008400529 cites W2061547804 @default.
- W2008400529 cites W2063974678 @default.
- W2008400529 cites W2064227310 @default.
- W2008400529 cites W2064632433 @default.
- W2008400529 cites W2065192198 @default.
- W2008400529 cites W2066058435 @default.
- W2008400529 cites W2068303498 @default.
- W2008400529 cites W2068316500 @default.
- W2008400529 cites W2069940803 @default.
- W2008400529 cites W2070211958 @default.
- W2008400529 cites W2070469434 @default.
- W2008400529 cites W2072239613 @default.