Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008432783> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2008432783 abstract "Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics.The topic of this paper is modern methods of clustering. The paper describes the theory needed to understand the principle of clustering and descriptions of algorithms used with clustering, followed by a comparison of the chosen methods. INTRODUCTION TO CLUSTER ANALYSIS Cluster analysis itself is not one specific algorithm, but a general task to be solved. It can be achieved by various algorithms that differ significantly in their notion of what constitutes a cluster and how to find them efficiently. Popular notions of clusters include groups with small distances among the cluster members, dense areas of the data space, intervals or particular statistical distributions. Clustering can therefore be formulated as a multiobjective optimization problem. The appropriate clustering algorithm and parameter settings (including values such as the distance function to use, density threshold, or number of expected clusters) depend on the individual data set and intended use of the results. Cluster analysis as such is not an automatic task, but an iterative process of knowledge discovery or interactive multi-objective optimization that involves trial and failure. It will often be necessary to modify data preprocessing and model parameters until the result achieves the desired properties. Clustering can be considered the most important unsupervised learning problem; so, as every other problem of this kind, it deals with finding a structure in a collection of unlabeled data. A loose definition of clustering could be “the process of organizing objects into groups whose members are similar in some way”. A cluster is therefore a collection of objects which are “similar” between them and are “dissimilar” to the objects belonging to other clusters. Besides the term clustering, there are a number of terms with similar meanings, including automatic classification, numerical taxonomy and typological analysis. Subtle differences are often in the usage of the results: while in data mining, the resulting groups are the matter of interest, in automatic classification the resulting discriminative power is of interest. This often leads to misunderstandings between researchers coming from the fields of data mining and machine learning, since they use the same terms and often the same algorithms, but have different goals. In this paper we will compare three different algorithms in an experimental study. MODERN CLUSTERING METHODS There are some well used clustering algorithms out there; one of them is the famous CLARANS. Other methods are K means, K-medoid, Hierarchical Clustering and Self-Organized Maps. Nevertheless, none of these algorithms can handle all these three mentioned problems in a good way. This report will not discuss these methods but focus on the DBSCAN(Density Based Spatial Clustering of Applications with Noise) algorithm, which introduces solutions to these problems." @default.
- W2008432783 created "2016-06-24" @default.
- W2008432783 creator A5030743088 @default.
- W2008432783 creator A5087274656 @default.
- W2008432783 creator A5089446348 @default.
- W2008432783 date "2014-05-27" @default.
- W2008432783 modified "2023-09-27" @default.
- W2008432783 title "Comparison Of Modern Clustering Algorithms For Two-Dimensional Data" @default.
- W2008432783 cites W106621143 @default.
- W2008432783 cites W1679913846 @default.
- W2008432783 cites W1966660942 @default.
- W2008432783 cites W2127218421 @default.
- W2008432783 cites W3141738472 @default.
- W2008432783 doi "https://doi.org/10.7148/2014-0346" @default.
- W2008432783 hasPublicationYear "2014" @default.
- W2008432783 type Work @default.
- W2008432783 sameAs 2008432783 @default.
- W2008432783 citedByCount "9" @default.
- W2008432783 countsByYear W20084327832017 @default.
- W2008432783 countsByYear W20084327832018 @default.
- W2008432783 countsByYear W20084327832019 @default.
- W2008432783 countsByYear W20084327832021 @default.
- W2008432783 countsByYear W20084327832022 @default.
- W2008432783 countsByYear W20084327832023 @default.
- W2008432783 crossrefType "proceedings-article" @default.
- W2008432783 hasAuthorship W2008432783A5030743088 @default.
- W2008432783 hasAuthorship W2008432783A5087274656 @default.
- W2008432783 hasAuthorship W2008432783A5089446348 @default.
- W2008432783 hasConcept C104047586 @default.
- W2008432783 hasConcept C11413529 @default.
- W2008432783 hasConcept C120894424 @default.
- W2008432783 hasConcept C124101348 @default.
- W2008432783 hasConcept C149872217 @default.
- W2008432783 hasConcept C153180895 @default.
- W2008432783 hasConcept C154945302 @default.
- W2008432783 hasConcept C164866538 @default.
- W2008432783 hasConcept C177264268 @default.
- W2008432783 hasConcept C184509293 @default.
- W2008432783 hasConcept C199360897 @default.
- W2008432783 hasConcept C27964816 @default.
- W2008432783 hasConcept C33704608 @default.
- W2008432783 hasConcept C41008148 @default.
- W2008432783 hasConcept C73555534 @default.
- W2008432783 hasConcept C94641424 @default.
- W2008432783 hasConceptScore W2008432783C104047586 @default.
- W2008432783 hasConceptScore W2008432783C11413529 @default.
- W2008432783 hasConceptScore W2008432783C120894424 @default.
- W2008432783 hasConceptScore W2008432783C124101348 @default.
- W2008432783 hasConceptScore W2008432783C149872217 @default.
- W2008432783 hasConceptScore W2008432783C153180895 @default.
- W2008432783 hasConceptScore W2008432783C154945302 @default.
- W2008432783 hasConceptScore W2008432783C164866538 @default.
- W2008432783 hasConceptScore W2008432783C177264268 @default.
- W2008432783 hasConceptScore W2008432783C184509293 @default.
- W2008432783 hasConceptScore W2008432783C199360897 @default.
- W2008432783 hasConceptScore W2008432783C27964816 @default.
- W2008432783 hasConceptScore W2008432783C33704608 @default.
- W2008432783 hasConceptScore W2008432783C41008148 @default.
- W2008432783 hasConceptScore W2008432783C73555534 @default.
- W2008432783 hasConceptScore W2008432783C94641424 @default.
- W2008432783 hasLocation W20084327831 @default.
- W2008432783 hasOpenAccess W2008432783 @default.
- W2008432783 hasPrimaryLocation W20084327831 @default.
- W2008432783 hasRelatedWork W1815383266 @default.
- W2008432783 hasRelatedWork W2098736878 @default.
- W2008432783 hasRelatedWork W2184520887 @default.
- W2008432783 hasRelatedWork W2187070692 @default.
- W2008432783 hasRelatedWork W2269370108 @default.
- W2008432783 hasRelatedWork W2280013922 @default.
- W2008432783 hasRelatedWork W2295884465 @default.
- W2008432783 hasRelatedWork W2398543122 @default.
- W2008432783 hasRelatedWork W2490542312 @default.
- W2008432783 hasRelatedWork W2523689756 @default.
- W2008432783 hasRelatedWork W2594864845 @default.
- W2008432783 hasRelatedWork W2889220789 @default.
- W2008432783 hasRelatedWork W2895308352 @default.
- W2008432783 hasRelatedWork W2904433372 @default.
- W2008432783 hasRelatedWork W2181978123 @default.
- W2008432783 hasRelatedWork W2182563076 @default.
- W2008432783 hasRelatedWork W2287140372 @default.
- W2008432783 hasRelatedWork W2338690331 @default.
- W2008432783 hasRelatedWork W2550840372 @default.
- W2008432783 hasRelatedWork W3125249621 @default.
- W2008432783 isParatext "false" @default.
- W2008432783 isRetracted "false" @default.
- W2008432783 magId "2008432783" @default.
- W2008432783 workType "article" @default.