Matches in SemOpenAlex for { <https://semopenalex.org/work/W2008447162> ?p ?o ?g. }
- W2008447162 endingPage "36" @default.
- W2008447162 startingPage "26" @default.
- W2008447162 abstract "In Florida, a root weevil pest of citrus, Diaprepes abbreviatus, is more damaging and attains higher population density in some orchards on fine textured, poorly drained “flatwoods” soils than in those on the deep, coarse sandy soils of the central ridge. Previous research revealed that sentinel weevil larvae were killed by indigenous entomopathogenic nematodes (EPNs) at significantly higher rates in an orchard on the central ridge, compared to one in the flatwoods. We hypothesized that filling tree planting holes in a flatwoods orchard with sandy soil from the central ridge would provide a more suitable habitat for EPNs, thereby reducing weevil numbers and root herbivory. Fifty trees were planted in oversized planting holes filled with coarse sand and 50 trees were planted in native soil in a split plot design where whole plots were species of introduced EPNs and split plots were soil type. Each of Steinernema diaprepesi, Steinernema riobrave, Heterorhabditis indica, Heterorhabditis zealandica, or no EPNs were introduced into the rhizospheres in 10 plots of each soil type. During four years, EPN numbers in soil samples and the relative abundance of seven species of nematophagous fungi associated with nematodes were measured three times using real-time PCR. The efficacy of EPNs against sentinel weevil larvae was also measured three times by burying caged weevils in situ. EPN species richness (P = 0.001) and diversity (P = 0.01) were always higher in sand than native soil. Soil type had no effect on numbers of EPNs in samples, but EPNs were detected more frequently (P = 0.01) in plots of sandy soil than native soil in 2011. Two nematophagous fungi species, Paecilomyces lilacinus and Catenaria sp. were significantly more abundant in nematode samples from sandy soil on all three sampling dates. Efficacy of EPNs against weevil larvae was greater in sandy soil inoculated with S. diaprepesi (P = 0.03) in June 2010 and in all treatments in sandy soil in May 2011 (P = 0.03). Sixty-eight percent more adult weevils (P = 0.01) were trapped emerging from native soil during two years than from sandy soil. By May 2011, the cumulative number of weevils emerging from each plot was inversely related (P = 0.01) to the numbers of EPNs detected in plots and to EPN efficacy against sentinels. Three trees in sandy soil died as a result of root herbivory compared to 21 trees in native soil. Surviving trees in sandy soil had trunk diameters that were 60% larger (P = 0.001) and produced 85% more fruit (P = 0.001) than those in native soil. Although it is not possible to characterize all of the mechanisms by which the two soil treatments affected weevils and trees, substitution of sand for native soil was an effective means of conserving EPNs and shows promise as a cultural practice to manage D. abbreviatus in flatwoods citrus orchards with a history of weevil damage to trees." @default.
- W2008447162 created "2016-06-24" @default.
- W2008447162 creator A5005583867 @default.
- W2008447162 creator A5012258152 @default.
- W2008447162 creator A5036975750 @default.
- W2008447162 creator A5037174283 @default.
- W2008447162 creator A5068118435 @default.
- W2008447162 creator A5076344921 @default.
- W2008447162 creator A5088474138 @default.
- W2008447162 date "2013-01-01" @default.
- W2008447162 modified "2023-10-15" @default.
- W2008447162 title "Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield" @default.
- W2008447162 cites W1487307123 @default.
- W2008447162 cites W1617576018 @default.
- W2008447162 cites W1965204497 @default.
- W2008447162 cites W1968732818 @default.
- W2008447162 cites W1973736426 @default.
- W2008447162 cites W1981848284 @default.
- W2008447162 cites W1989959305 @default.
- W2008447162 cites W1991201448 @default.
- W2008447162 cites W1991590750 @default.
- W2008447162 cites W1993420249 @default.
- W2008447162 cites W1995456552 @default.
- W2008447162 cites W2003878377 @default.
- W2008447162 cites W2007721790 @default.
- W2008447162 cites W2008714629 @default.
- W2008447162 cites W2012177012 @default.
- W2008447162 cites W2028660925 @default.
- W2008447162 cites W2035689050 @default.
- W2008447162 cites W2037873858 @default.
- W2008447162 cites W2040167366 @default.
- W2008447162 cites W2042151151 @default.
- W2008447162 cites W2045590725 @default.
- W2008447162 cites W2048659427 @default.
- W2008447162 cites W2049231807 @default.
- W2008447162 cites W2055125040 @default.
- W2008447162 cites W2058899022 @default.
- W2008447162 cites W2061819013 @default.
- W2008447162 cites W2068846420 @default.
- W2008447162 cites W2069599495 @default.
- W2008447162 cites W2071093154 @default.
- W2008447162 cites W2072629681 @default.
- W2008447162 cites W2076185535 @default.
- W2008447162 cites W2078009496 @default.
- W2008447162 cites W2081938911 @default.
- W2008447162 cites W2082150843 @default.
- W2008447162 cites W2089406194 @default.
- W2008447162 cites W2090095513 @default.
- W2008447162 cites W2090206813 @default.
- W2008447162 cites W2090918776 @default.
- W2008447162 cites W2100927103 @default.
- W2008447162 cites W2105599654 @default.
- W2008447162 cites W2118128757 @default.
- W2008447162 cites W2126258567 @default.
- W2008447162 cites W2126603191 @default.
- W2008447162 cites W2149897041 @default.
- W2008447162 cites W2174713497 @default.
- W2008447162 cites W2177655690 @default.
- W2008447162 cites W2178794101 @default.
- W2008447162 cites W2322364623 @default.
- W2008447162 cites W2324601290 @default.
- W2008447162 cites W4234651062 @default.
- W2008447162 cites W844725873 @default.
- W2008447162 doi "https://doi.org/10.1016/j.biocontrol.2012.09.006" @default.
- W2008447162 hasPublicationYear "2013" @default.
- W2008447162 type Work @default.
- W2008447162 sameAs 2008447162 @default.
- W2008447162 citedByCount "61" @default.
- W2008447162 countsByYear W20084471622012 @default.
- W2008447162 countsByYear W20084471622013 @default.
- W2008447162 countsByYear W20084471622014 @default.
- W2008447162 countsByYear W20084471622015 @default.
- W2008447162 countsByYear W20084471622016 @default.
- W2008447162 countsByYear W20084471622017 @default.
- W2008447162 countsByYear W20084471622018 @default.
- W2008447162 countsByYear W20084471622019 @default.
- W2008447162 countsByYear W20084471622020 @default.
- W2008447162 countsByYear W20084471622021 @default.
- W2008447162 countsByYear W20084471622022 @default.
- W2008447162 countsByYear W20084471622023 @default.
- W2008447162 crossrefType "journal-article" @default.
- W2008447162 hasAuthorship W2008447162A5005583867 @default.
- W2008447162 hasAuthorship W2008447162A5012258152 @default.
- W2008447162 hasAuthorship W2008447162A5036975750 @default.
- W2008447162 hasAuthorship W2008447162A5037174283 @default.
- W2008447162 hasAuthorship W2008447162A5068118435 @default.
- W2008447162 hasAuthorship W2008447162A5076344921 @default.
- W2008447162 hasAuthorship W2008447162A5088474138 @default.
- W2008447162 hasConcept C104727253 @default.
- W2008447162 hasConcept C144024400 @default.
- W2008447162 hasConcept C144027150 @default.
- W2008447162 hasConcept C149923435 @default.
- W2008447162 hasConcept C168741863 @default.
- W2008447162 hasConcept C2776070465 @default.
- W2008447162 hasConcept C2780753983 @default.
- W2008447162 hasConcept C2780817911 @default.
- W2008447162 hasConcept C2908647359 @default.
- W2008447162 hasConcept C59822182 @default.